Webbc.ru

Веб и кризис
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Суть метода платежной матрицы

Платежная матрица;

Суть каждого принимаемого руководством решения — выбор наилучшей из нескольких альтернатив по конкретным установленным заранее критериям. Платежная матрица — это один из методов статистической теории решений, метод, который может оказать помощь руководителю в выборе одного из нескольких вариантов. Он особенно полезен, когда руководитель должен установить, какая стратегия в наибольшей мере будет способствовать достижению целей.

По словам Н. Пола Лумбы: «Платеж представляет собой денежное вознаграждение или полезность, являющиеся следствием конкретной стратегии в сочетании с конкретными обстоятельствами. Если платежи представить в форме таблицы (или матрицы), мы получаем платежную матрицу», как показано на рис. 8.4. Слова «в сочетании с конкретными обстоятельствами» очень важны, чтобы понять, когда можно использовать платежную матрицу и оценить, когда решение, принятое на ее основе, скорее всего будет надежным. В самом общем виде матрица означает, что платеж зависит от определенных событий, которые фактически свершаются. Если такое событие или состояние природы не случается на деле, платеж неизбежно будет иным.

В целом платежная матрица полезна, когда:

1. Имеется разумно ограниченное число альтернатив или вариантов стратегии для выбора между ними.

2. То, что может случиться, с полной определенностью не известно.

3. Результаты принятого решения зависят от того, какая именно выбрана альтернатива и какие события в действительности имеют место.

Кроме того, руководитель должен располагать возможностью объективной оценки вероятности релевантных событий и расчета ожидаемого значения такой вероятности. Руководитель редко имеет полную определенность. Но также редко он действует в условиях полной неопределенности. Почти во всех случаях принятия решений руководителю приходится оценивать вероятность или возможность события. Из предшествующего рассмотрения напомним, что вероятность варьирует от 1, когда событие определенно произойдет, до 0, когда событие определенно не произойдет. Вероятность можно определить объективно, как поступает игрок в рулетку, ставя на нечетные номера. Выбор ее значения может опираться на прошлые тенденции или субъективную оценку руководителя, который исходит из собственного опыта действий в подобных ситуациях.

Рис .4.Платежная матрица

Представим ситуацию торгового агента, который решает, лететь ему самолетом или ехать поездом за город, где находится потребитель. Если погода будет хорошей, он может лететь и потратить на всю дорогу от ворот до ворот 2 ч, а если придется ехать поездом — 7 ч. Если он поедет поездом, то потеряет день на месте его работы, который, по его оценке, мог бы увеличить сбыт на 1500 долл. По оценке иногородний потребитель должен вручить ему заказ на 3000 долл., если он лично посетит клиента. Если он запланирует лететь к клиенту, в потом самолет вынужден будет приземлиться из-за тумана, придется заменить личное посещение телефонным звонком. Это приведет к уменьшению заказа иногороднего клиента до 500 долл., зато агент сможет обеспечить заказы на 1500 долл. дома.

Приведенные выше данные платежной матрицы отражают оценку последствий разных вариантов действий. Дополнительно представлены некоторые предположения относительно вероятности тумана (который скажется на самолете, но не на поезде) и ясной погоды. Мы видим, что вероятность ясной погоды в 10 раз выше, чем тумана. Далее, матрица показывает, что, действуя по первому варианту стратегии (самолет), если погода будет хорошей (9 шансов из 10), торговый агент по оценке продаст товаров на 4500 долл. (это и есть результат или последствия). Три других варианта последствий можно объяснить таким же образом, мы опускаем эти рассуждения.

Если вероятность не была принята в расчет, решение всегда будет соскальзывать в направлении наиболее оптимистических последствий. Например, если исходить из того, что инвесторы на удачной кинокартине могут иметь 500% на инвестированный капитал, а при вложении в торговую сеть — в самом благоприятном варианте всего 20%, то решение всегда должно быть в пользу кинопроизводства. Однако если взять в расчет, что вероятность большого успеха кинофильма весьма невысока, капиталовложения в магазины становятся более привлекательными, поскольку вероятность получения указанных 20% очень значительна. Если взять более простой пример, то выплаты при ставках в заезде на длинную дистанцию на скачках выше, поскольку выше вероятность, что не выиграешь вообще ничего.

Вероятность прямо влияет на определение ожидаемого значения — центральной концепции платежной матрицы. Ожидаемое значение альтернативы или варианта стратегии — это сумма возможных значений, умноженных на соответствующие вероятности. К примеру, если вы считаете, что вложение средств (как стратегия действий) в киоск для торговли мороженым с вероятностью 0,5 обеспечит вам годовую прибыль 5000 долл., с вероятностью 0,2 — 10 000 долл. и с вероятностью 0,3 — 3000 долл., то ожидаемое значение составит:

5000 (0,5) + 10 000 (0,2) + 3000 (0,3) = 5400 долл.

Определив ожидаемое значение каждой альтернативы и расположив результаты в виде матрицы, руководитель без труда может установить, какой выбор наиболее привлекателен при заданных критериях. Он будет, конечно, соответствовать наивысшему ожидаемому значению. Исследования показывают: когда установлены точные значения вероятности, методы дерева решений и платежной матрицы обеспечивают принятие более качественных решений, чем традиционные подходы.

Платежная матрица

Суть каждого принимаемого руководством решения — выбор наилучшей из нескольких альтернатив по конкретным установленным заранее критериям. Платежная матрица — это один из методов статистической теории решений, метод, который может оказать помощь руководителю в выборе одного из нескольких вариантов. Он особенно полезен, когда руководитель должен установить, какая стратегия в наибольшей мере будет способствовать достижению целей.

По словам Н. Пола Лумбы: «Платеж представляет собой денежное вознаграждение или полезность, являющиеся следствием конкретной стратегии в сочетании с конкретными обстоятельствами. Если платежи представить в форме таблицы (или матрицы), мы получаем платежную матрицу», как показано на рис. 8. Слова «в сочетании с конкретными обстоятельствами» очень важны, чтобы понять, когда можно использовать платежную матрицу и оценить, когда решение, принятое на ее основе, скорее всего будет надежным. В самом общем виде матрица означает, что платеж зависит от определенных событий, которые фактически свершаются. Если такое событие или состояние природы не случается на деле, платеж неизбежно будет иным.

В целом платежная матрица полезна, когда:

1. Имеется разумно ограниченное число альтернатив или вариантов стратегии для выбора между ними.

2. То, что может случиться, с полной определенностью не известно.

3. Результаты принятого решения зависят от того, какая именно выбрана альтернатива и какие события в действительности имеют место.

Кроме того, руководитель должен располагать возможностью объективной оценки вероятности релевантных событий и расчета ожидаемого значения такой вероятности. Руководитель редко имеет полную определенность. Но также редко он действует в условиях полной неопределенности. Почти во всех случаях принятия решений руководителю приходится оценивать вероятность или возможность события. Из предшествующего рассмотрения напомним, что вероятность варьирует от 1, когда событие определенно произойдет, до 0, когда событие определенно не произойдет. Вероятность можно определить объективно, как поступает игрок в рулетку, ставя на нечетные номера. Выбор ее значения может опираться на прошлые тенденции или субъективную оценку руководителя, который исходит из собственного опыта действий в подобных ситуациях.

Если вероятность не была принята в расчет, решение всегда будет соскальзывать в направлении наиболее оптимистических последствий. Например, если исходить из того, что инвесторы на удачной кинокартине могут иметь 500% на инвестированный капитал, а при вложении в торговую сеть — в самом благоприятном варианте всего 20%, то решение всегда должно быть в пользу кинопроизводства. Однако если взять в расчет, что вероятность большого успеха кинофильма весьма невысока, капиталовложения в магазины становятся более привлекательными, поскольку вероятность получения указанных 20% очень значительна. Если взять более простой пример, то выплаты при ставках в заезде на длинную дистанцию на скачках выше, поскольку выше вероятность, что не выиграешь вообще ничего.

Читать еще:  Экономическое содержание понятий платежеспособности и ликвидности

Вероятность прямо влияет на определение ожидаемого значения — центральной концепции платежной матрицы. Ожидаемое значение альтернативы или варианта стратегии — это сумма возможных значений, умноженных на соответствующие вероятности. К примеру, если вы считаете, что вложение средств (как стратегия действий) в киоск для торговли мороженым с вероятностью 0,5 обеспечит вам годовую прибыль 5000 долл., с вероятностью 0,2 — 10 000 долл. и с вероятностью 0,3 — 3000 долл., то ожидаемое значение составит:

5000 (0,5) + 10 000 (0,2) + 3000 (0,3) = 5400 долл.

Определив ожидаемое значение каждой альтернативы и расположив результаты в виде матрицы, руководитель без труда может установить, какой выбор наиболее привлекателен при заданных критериях. Он будет, конечно, соответствовать наивысшему ожидаемому значению. Исследования показывают: когда установлены точные значения вероятности, методы дерева решений и платежной матрицы обеспечивают принятие более качественных решений, чем традиционные подходы.

Суть метода платежной матрицы

Платежная матрица

Практически любой метод принятия решений, используемый в управлении, можно технически рассматривать как разновидность моделирования. Однако по традиции термин модель обычно относится лишь к методам общего характера, только что описанным выше, а также к многочисленным их специфическим разновидностям. В дополнение к моделированию, имеется ряд методов, способных оказать помощь руководителю в поиске объективно обоснованного решения по выбору из нескольких альтернатив той, которая в наибольшей мере способствует достижению целей. Под заголовок данного раздела попадают платежная матрица и дерево решений, описанные ниже. Для облегчения использования этих методов и вообще повышения качества принимаемых решений руководство пользуется прогнозированием. Наиболее распространенные методы прогнозирования рассмотрены в следующем разделе. Наша цель заключается в том, чтобы помочь понять суть этих инструментов, а не научить ими пользоваться. [c.236]

Суть каждого принимаемого руководством решения — выбор наилучшей из нескольких альтернатив по конкретным установленным заранее критериям. (Если вы захотите вспомнить рассмотрение ограничений и критериев для принятия решений, обратитесь к гл. 6). Платежная матрица — это один из методов статистической теории решений, метод, который может оказать помощь руководителю в выборе одного из нескольких вариантов. Он особенно полезен, когда руководитель должен установить, какая стратегия в наибольшей мере будет способствовать достижению целей. [c.236]

В целом платежная матрица полезна, когда [c.237]

Вероятность прямо влияет на определение ожидаемого значения — центральной концепции платежной матрицы. Ожидаемое значение альтернативы или варианта стратегии — это сумма возможных значений, умноженных на соответствующие вероятности. К примеру, если вы считаете, что вложение средств (как стратегия действий) в киоск для торговли мороженым с вероятностью 0,5 обеспечит вам годовую прибыль 5000 долл., с вероятностью 0,2 — 10 000 долл. и с вероятностью 0,3 — 3000 долл., то ожидаемое значение составит [c.237]

Методом дерева решений можно пользоваться в ситуациях, подобных описанной выше, в связи с рассмотрением платежной матрицы. В этом случае предполагается, что данные о результатах, вероятности и т.п. не влияют на все последующие решения. Однако дерево решений можно построить под более сложную ситуацию, когда результаты одного решения влияют на последующие решения. Таким образом, дерево решений — это полезный инструмент для принятия последовательных решений. [c.238]

Метод платежной матрицы полезен, когда требуется установить, какая альтернатива способна внести наибольший вклад в достижение целей. Ожидаемое значение последствий (сумма возможных значений, умноженных на их вероятности) необходимо определить прежде, чем составлять платежную матрицу. [c.244]

Рассмотрите следующие методы принятия решений анализ безубыточности, метод платежной матрицы, метод ожидаемых значений и метод дерева решений. [c.245]

В табл. 12.2 сведены результаты различных возможных решений по ценообразованию. Решая, какую цену установить, две фирмы играют в некооперативную игру — каждая фирма самостоятельно решает, как ей лучше поступить, принимая в расчет своего конкурента. Табл. 12.2 называют платежной матрицей для этой игры, так как она показывает прибыль каждой фирмы, если известны ее решение и решение ее конкурента. Например, верхний левый угол платежной матрицы говорит нам, что, если обе фирмы назначат цену 4 долл., каждая фирма получит прибыль 12 долл. Верхний правый угол показывает, что, если фирма 1 назначает цену в 4 долл., а фирма 2 — в 6 долл., фирма 1 получает прибыль в 20 долл., а фирма 2 — в 4 долл. [c.355]

ТАБЛИЦА 12.2 Платежная матрица для игры по протезированию цен [c.355]

Данная платежная матрица может прояснить ответ на первоначальный вопрос почему фирмы не действуют сообща и тем самым не получают более высокие прибыли, даже если они и имеют возможность договориться В данном случае договор означает, что обе фирмы назначат цену в 6 долл. вместо 4 долл. и получат при этом прибыль 16 долл. вместо 12 долл. Проблема заключается в том, что каждая фирма всегда старается выиграть, назначая цену в 4 долл., независимо от того, как поступает ее конкурент. Как показывает платежная матрица, [c.355]

Рассматривая предприятие (Р,) и природу (Р2) в качестве двух игроков, получим так называемую платежную матрицу следующего вида (табл. 6.11) [c.173]

Из платежной матрицы видно, что игрок Р, (предприятие) никогда не получит дохода меньше 6800. Но если погодные условия совпадут с выбранной стратегией, то выручка (выигрыш) предприятия будет составлять 26000 или 28400. Если игрок Р, будет постоянно применять стратегию А, а игрок Р2 — стратегию Д, то выигрыш снизится до 6800. То же самое произойдет, если игрок Р, будет постоянно применять стратегию В, а игрок Р2 —- стратегию С. Отсюда вывод, что наибольший доход предприятие обеспечит, если будет попеременно применять то стратегию А, то стратегию В. Такая стратегия называется смешанной, а ее элементы (А и В) — чистыми стратегиями. [c.174]

Рассматривая АО Силуэт и природу в качестве двух игроков /, и Р2, получим по итогам произведенных расчетов так называемую платежную матрицу следующего вида (с. 53). [c.52]

По данным платежной матрицы игрок Р1 (АО Силуэт ) никогда не получит прибыль меньше 136 000 руб. Если погодные условия совпадут с выбранной стратегией, то прибыль АО (выигрыш) будет составлять 568 000 или 520 000 руб. Если игрок Р будет постоянно принимать стратегию А, а игрок Р2 — стратегию Д, то прибыль снизится до 136 000 руб. То же самое будет, если игрок Р постоянно принимает стратегию В, а игрок Р2 — страте- [c.52]

Матричные игры. Для выбора решения применяется платежная матрица, или матрица решений. Она представляет собой таблицу, в которой по вертикали указываются возможные решения, а по горизонтали — состояния среды, на которую нельзя влиять. На пересечении строк и столбцов указывают результаты решения при данном состоянии среды — платежи . Они могут быть выражены в терминах издержек, прибыли, поступлений денежных средств. [c.74]

Пример. Суточный спрос на скоропортящийся продукт в тоннах выражается следующим распределением (спрос/вероятность) (0,0/0,2) (1,0/0,3) (2,0/0,4) (3,0/0,5). Пусть себестоимость тонны — 3 тыс. руб., продажная цена — 5 тыс. руб., прибыль за единицу— 2 тыс. руб. Магазин может держать запас в 0, 1,2 или 3 т. Положим, что дневной запас не может быть продан завтра, и остатки целиком списываются в убытки. Платежная матрица показана в табл. 7.2. Анализ с полной информацией приведен в табл. 7.3. [c.74]

Читать еще:  Платежная система республики беларусь

Пусть торговое предприятие имеет т стратегий Т, Т ,. . Т , и имеется п возможных состояний природы Ль П2,. . Пп. Так как природа не является заинтересованной стороной, исход любого сочетания поведения сторон можно оценить выигрышем Ъц первой стороны для каждой пары стратегий Т, и TIj. Все показатели игры заданы платежной матрицей йу . [c.153]

Пример. Предприятие планирует производство двух изделий А, Б с неопределенным спросом, предполагаемый уровень которого характеризуется двумя состояниями I, П. В зависимости от этих состояний прибыль предприятия различна и определяется платежной матрицей [c.156]

Требуется определить объемы производства каждого изделия, при котором предприятию гарантируется средняя величина при любом состоянии спроса. Решение. Проверка платежной матрицы на наличие седловой точки [c.156]

Пусть задана платежная матрица игры [c.157]

Условие игры обычно записывается в форме платежной матрицы, или матрицы игры (табл. 3.33). [c.148]

Пусть платежная матрица задана в качественных терминах. Данные [c.15]

Анализ платежных матриц позволяет сделать следующие выводы при неполной информации наилучший выбор — держать запас в 2 т с наибольшим значением прибыли 1,90 тыс. руб. Это лучшее, что вы можете сделать при ограниченной информации. [c.117]

В практике управления широко используются такие методы, как платежная матрица дерево целей или решений. Наиболее известным из них является метод дерева решений для сравнения и оценки выдвинутых альтернатив. Особенно данный метод полезен в ситуациях, когда менеджер имеет дело с неопределенностью. Этот метод дает общую картину решения выборы, риски и исходы, которые могут иметь место. Более того, данный метод помогает открыть новые альтернативы, которые ранее могли быть опущены по каким-то причинам. [c.545]

Приведенные выше данные платежной матрицы отражают оценку последствий разных вариантов действий. Дополнительно представлены некоторые предположения относительно вероятности тумана который скажется на самолето, но не на поезде) и ясной погоды. Мы видим, что вероятность ясной погоды в 10 рлз выше, чем ту лана. Далее, матрица показывает, что, действуя по первому варианту стратегии (самолет), если погода будет хорошей (9 шансов из 10), торговый агент по оценке продаст товаров на 4500 долл. (это и есть результат или последствия). Три других варианта последствий можно объяснить таким же образом, мы опускаем эти рассуждения. [c.236]

По словам Н. Пола Лумбы Платеж представляет собой денежное вознаграждение или полезность, являющиеся следствием конкретной стратегии в сочетании с конкретными обстоятельствами. Если платежи представить в форме таблицы (или матрицы), мы получаем платежную матрицу 24, как показано на рис. 8.4. Слова в сочетании с конкретными обстоятельствами очень важны, чтобы понять, когда можно использовать платежную матрицу и оценить, когда решение, принятое на ее основе, скорее всего будет надежным. В самом общем виде матрица означает, что платеж зависит от определенных событий, которые фактически свершаются. Если такое событие или состояние природы не случается на деле, платеж неизбежно будет иным. [c.237]

Определив ожидаемое значение каждой альтернативы и расположив результаты в виде матрицы, руководитель без труда может установить, какой выбор наиболее привлекателен при заданных критериях. Он будет, конечно, соответствовать наивысшему ожидаемому значению. Исследования показывают когда установлены точные значения вероятности, методы дерева решений и платежной матрицы обеспечивают принятие более качественных решений, чем традиционные подходы25. [c.237]

ПЛАТЕЖНАЯ МАТРИЦА (PAYOFF MATRIX) — статистический метод принятия решений, помогающий руководителю выбирать из возможных альтернатив. [c.690]

Возможйые варианты (исходы) игры сводятся в прямоугольную таблицу — платежную матрицу, в которой строки соответствуют различным стратегиям игрока А, столбцы — стратегиям игрока В, qtj называется ценой игры (табл. 8.23). [c.150]

По платежной матрице можно принять ряд решений. Например, оценить возможные исходы минимальный выигрыш ВТ1 = minBy, то есть наименьшая из величин в каждой i-й строке как пессимистическая оценка максимальный выигрыш — то наилучшее, что дает выбор i-ro варианта В «» = max bV. [c.153]

Решение. Прежде всего проверяется имеет ли исходная платежная матрица седловую точку ot = max minay = max (22,21,20) = 22 — нижняя цена [c.156]

Суждения о предпочтительности альтернатив выносится по результатам их сравнения или оценки. Г позитивные и негативные стороны каждой из альтернатив и устанавливается некий компромисс, поз] сопоставление альтернативы с ранее принятым стандартом, критерием. Для этого используют критериальное сравнение Кепнера -Трегое, платежная матрица, дерево целей или решений, а также i теориях вероятности, предпочтений, полезности и др. Наиболее распространенным методом сравне) является метод дерева решений , особенно в ситуациях неопределенных, при наличии неуправляемы [c.87]

ИГРА С «ПРИРОДОЙ» [game with nature] — игра, в которой имеется только один игрок, причем исход ее зависит не только от его решений, но и от состояния «природы», т.е. не от сознательно противодействующего противника, но от объективной, невраждебной действительности. Платежная матрица в этом случае похожа на показанную в ст. «Матрица игры», но здесь игрок X — это лицо, принимающее одно из т различных возможных решений, а игрок Y— «природа», принимающая и возможных состояний. При выборе решения игроком X могут использоваться различные критерии, напр. [c.112]

1. Метод платежной матрицы

Хотя некоторые модели, используемые в производственном менеджменте, настолько сложны, что без компьютера обойтись невозможно, концепция моделирования проста.

По определению Шеннона: «МОДЕЛЬ — это представление объекта, системы или идеи в некоторой форме, отличной от самой целостности». Схема организации, к примеру, это и есть модель, представляющая ее структуру.

Главной характеристикой модели можно считать упрощение реальной жизненной ситуации, к которой она применяется. Поскольку форма модели менее сложна, а не относящиеся к делу данные, затуманивающие проблему в реальной жизни, устраняются, модель зачастую повышает способность руководителя к пониманию и разрешению встающих перед ним проблем.

Число всевозможных конкретных моделей науки управления почти так же велико, как и число проблем, для разрешения которых они были разработаны.

Практически любой метод принятия решений, используемый в управлении, можно технически рассматривать как разновидность моделирования. В дополнение к моделированию, имеется ряд методов, способных оказать помощь руководителю в поиске объективно обоснованного решения по выбору из нескольких альтернатив той, которая в наибольшей мере способствует достижению целей. К таким относится Платежная матрица.

Суть каждого принимаемого руководством решения — выбор наилучшей из нескольких альтернатив по конкретным установленным заранее критериям.

Платежная матрица — это один из методов статистической теории решений, метод, который может оказать помощь руководителю в выборе одного из нескольких вариантов. Он особенно полезен, когда руководитель должен установить, какая стратегия в наибольшей мере будет способствовать достижению целей.

По словам Н. Пола Лумбы: «Платеж представляет собой денежное вознаграждение или полезность, являющиеся следствием конкретной стратегии в сочетании с конкретными обстоятельствами. Если платежи представить в форме таблицы (или матрицы), мы получаем платежную матрицу», как показано в таблице 1.

В самом общем виде матрица означает, что платеж зависит от определенных событий, которые фактически свершаются. Если такое событие или состояние природы не случается на деле, платеж неизбежно будет иным Мескон Майкл, Альберт Майкл, Хедоури Франклин. Основы менеджмента./ Перевод с английского. — М.:Издательство «Дело», 1997. — http://www.tourlib.columb.net.ua/Lib/meskon.htm .

Читать еще:  Бюджет движения платежных средств

Таблица 1. Платежная матрица

Вероятность той или иной погоды

Ясная погода (0,9)

Стратегия 1: Самолет

Стратегия 2: Поезд

В целом платежная матрица полезна, когда:

1. Имеется разумно ограниченное число альтернатив или вариантов стратегии для выбора между ними.

2. То, что может случиться, с полной определенностью не известно.

3. Результаты принятого решения зависят от того, какая именно выбрана альтернатива и какие события в действительности имеют место.

Кроме того, руководитель должен располагать возможностью объективной оценки вероятности релевантных событий и расчета ожидаемого значения такой вероятности. Руководитель редко имеет полную определенность. Но также редко он действует в условиях полной неопределенности. Почти во всех случаях принятия решений руководителю приходится оценивать вероятность или возможность события. Из предшествующего рассмотрения напомним, что вероятность варьирует от 1, когда событие определенно произойдет, до 0, когда событие определенно не произойдет. Вероятность можно определить объективно, как поступает игрок в рулетку, ставя на нечетные номера. Выбор ее значения может опираться на прошлые тенденции или субъективную оценку руководителя, который исходит из собственного опыта действий в подобных ситуациях.

Если вероятность не была принята в расчет, решение всегда будет соскальзывать в направлении наиболее оптимистических последствий.

Например, если исходить из того, что инвесторы на удачной кинокартине могут иметь 500% на инвестированный капитал, а при вложении в торговую сеть — в самом благоприятном варианте всего 20%, то решение всегда должно быть в пользу кинопроизводства. Однако если взять в расчет, что вероятность большого успеха кинофильма весьма невысока, капиталовложения в магазины становятся более привлекательными, поскольку вероятность получения указанных 20% очень значительна. Если взять более простой пример, то выплаты при ставках в заезде на длинную дистанцию на скачках выше, поскольку выше вероятность, что не выиграешь вообще ничего Мескон Майкл, Альберт Майкл, Хедоури Франклин. Основы менеджмента./ Перевод с английского. — М.:Издательство «Дело», 1997. — http://www.tourlib.columb.net.ua/Lib/meskon.htm .

Вероятность прямо влияет на определение ожидаемого значения — центральной концепции платежной матрицы. Ожидаемое значение альтернативы или варианта стратегии — это сумма возможных значений, умноженных на соответствующие вероятности.

Определив ожидаемое значение каждой альтернативы и расположив результаты в виде матрицы, руководитель без труда может установить, какой выбор наиболее привлекателен при заданных критериях. Он будет, конечно, соответствовать наивысшему ожидаемому значению (Таблица 2).

На основе платежной матрицы З = ||Зji|| рассчитывается матрица рисков — =||ji|| . При этом риск ji для варианта деятельности xj и сочетания исходных данных определяется по формуле

Таблица 2. Платежная матрица З = ||Зji||

Вопрос. Метод платежной матрицы

Это один из методов принятия управленческих решений, который применяется в условиях, когда:

• число альтернативных вариантов разумно ограничено;

• нет полной определенности в отношении того, что может про­изойти (неопределенность среды).

В данном случае платеж — это денежное вознаграждение за конк­ретную стратегию (работу) с учетом конкретных обстоятельств.

Если рассматриваемые варианты и платежи представить в виде мат­рицы, то получится платежная матрица. Менеджер (руководитель) должен объективно оценить вероятность совершения события и рас­считать ожидаемое значение вероятности. Вероятность события варь­ируется от 0 (когда событие определенно не произойдет) до 1 (когда оно определенно произойдет). Сумма всех вероятностей равна 1. Вероятность может быть определена на основе экспертной оценки ру­ководителя. Она прямо влияет на определение ожидаемого значения альтернативы.

Вопрос. Метод цепных подстановок

Метод используется для разработки и принятия решений в том слу­чае, если проблема имеет строго выраженный функциональный харак­тер. При этом функция должна быть выражена либо в виде произведе­ния, либо в виде частного от деления одних показателей на другие, либо в виде суммы.

Суть метода заключается в последовательной замене плановых ве­личин одного из факторов при условии, что остальные факторы оста­ются неизменными. Степень влияния на функцию того или иного фак­тора определяется последовательным вычитанием г’-го расчета из (/+1)-го. Причем в первом расчете все величины плановые, а в пос­леднем — фактические.

Анализируя влияние факторов на функцию, выявляют, за счет вли­яния каких факторов и как («+» или «-») произошли отклонения фак­тического значения функции от планового.

Вопрос. Метод контрольных вопросов

Позволяет упорядочить процесс отбора вариантов и состоит в том, что варианты перечисляются в последовательности, задаваемой рядом специально подобранных наводящих вопросов. Эти вопросы состав­ляются с учетом особенностей мышления.

На этапе разработки управленческих решений и на этапе выбора варианта управленческого решения используются ключевые слова, построенные в логической последовательности. Например:

• какова проблема (в чем заключается проблема)?

• кто участвует в ее решении?

• где она возникла?

• какие возможны варианты решения?

Метод построен на логической структурной основе, но уровень ар­гументации часто бывает не очень высок.

Вопрос. Метод проб и ошибок — метод, ориентированный на действие

С точки зрения организации — это самый простой метод, так как он не требует специальной организации. Метод предполагает перечис­ление всех возможных вариантов решения проблемы без попытки упо­рядочить или строго организовать этот процесс.

Этот метод связан с неисследованностью, высоким уровнем новиз­ны проблемы или с недостаточным уровнем профессионализма при­нимающего решение (небольшой опыт работы, отсутствие знания экспертных методов разработки и принятия управленческих решений).

Вопрос. Метод сценариев

Метод сценариев используется в сфере принятия управленческих решений в долгосрочном периоде.

Сценарий — описание или картина будущего какого-либо объекта (фирмы), составленные с учетом правдоподобных предпочтений.

Прогнозная оценка чаще всего представляется в виде трех возмож­ных вариантов сценария:

3) ожидаемого, наиболее вероятного.

Сценарий используют для принятия решений в сфере стратегичес­кого развития фирм, регионов, технологий, рынков.

Выделяют следующие этапы проведения (составления) сценария:

1. Формулирование проблемы:

а) производится сбор и анализ информации;

б) выполняются согласование со всеми участниками проекта ре­шения сути задачи и ее формулирование.

2. Определение и группировка сфер влияния:

а) выделяются критические точки среды бизнеса;

б) производится оценка их возможного влияния на будущее фирмы.

3. Определение показателей будущего развития объекта.

Эти показатели не должны быть амбициозными или завышен­ными. Те сферы деятельности, развитие которых может идти по не­скольким вариантам, описываются при помощи нескольких альтер­нативных показателей.

4. Формулирование и отбор согласующихся наборов предположений:

а) развитие определяется исходя из сегодняшнего положения и все­
возможных изменений;

б) различные альтернативные предположения о будущем комбинируются в наборы;

в) из всех полученных наборов выбирают, как правило, три с уче­том следующих критериев:

—высокая сочетаемость, совместимость предположений, входя­щих в набор;

—наличие большого числа значимых переменных;

—высокая вероятность событий, относящихся к набору предпо­ложений.

5. Сопоставление намеченных показателей будущего состояния сфер
(фирмы) с предположениями об их развитии:

а) сравниваются результаты этапов 3 и 4;

б) завышенные и заниженные показатели состояния корректиру­ются при помощи данных этапа 4.

Для более точного прогноза необходимо сокращать интервал про­гнозирования, то есть делить его на несколько фрагментов, составляя несколько сценариев.

6. Введение в анализ разрушительных событий.

Под разрушительным событием понимаются как негативный, так и позитивный моменты.

7. Установление последствий.

На данном этапе происходит сравнение стратегических проблем фирмы и выбранных вариантов ее развития.

Дата добавления: 2018-09-22 ; просмотров: 110 ;

Ссылка на основную публикацию
Adblock
detector