Webbc.ru

Веб и кризис
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Планирование обработка и анализ эксперимента

Обработка и анализ результатов эксперимента. Обработка и анализ результатов ПФЭ предусматривает следующий порядок их проведения:

Обработка и анализ результатов ПФЭ предусматривает следующий порядок их проведения:

1. Оцениваются дисперсии среднего арифметического в каждой строке матрицы по формуле

(6.9)

2. Проверяются однородности дисперсий. Так как даже одна грубая ошибка может исказить результаты исследования, проведенного при небольшом числе экспериментов, то необходим контроль воспроизводимости результатов исследования, который осуществляется с помощью критерия Кохрена. Подсчитывают параметр

, (6.10)

то есть вычисляют отношение максимального значения изменчивости (максимального значения дисперсии, определенного по (6.9)) среди N опытов к сумме изменчивостей во всех N опытах.

Найденное по (6.10) наибольшее экспериментальное значение G сравнивают с критичным (табличным) его значением Gкр.

Критичное значение Gкр представляет собой максимально возможное значение параметра G, при котором гипотеза о воспроизводимости эксперимента еще может считаться справедливой. В этом случае максимальная изменчивость функции отклика, полученная в результате проведения n параллельных опытов, не отличается от ожидаемой среди N опытов. Задаваясь определенным значением коэффициента риска β, значение Gкр определяют в столбце таблицы А3 приложения А, соответствующем числу параллельных опытов (n) и строке, соответствующей числу номеров опытов (N).

Если G ≤ Gкр, то «подозрительное» максимальное значение изменчивости не является «инородным», а представляет собой результат случайного рассеяния исследуемой функции отклика, то есть эксперименты воспроизводимы и их результаты можно использовать для оценки коэффициентов регрессии.

Если G > Gкр, то эксперименты не воспроизводимы, то есть неконтролируемые и неуправляемые факторы создают на выходе слишком большой уровень «шума». Необходимо проверить следующую точку (имеющую второе по величине значение Sx 2 ) и так далее, то есть нужно выявить все точки, в которых эксперимент невоспроизводим. При этом можно увеличить число параллельных опытов.

3. Создается математическая модель объекта с проверкой статистической значимости коэффициентов полинома.

После выполнения ПФЭ осуществляют независимую оценку коэффициентов полинома по следующей формуле:

(6.11)

где X ix принимает значения +1 или –1 в соответствии с матрицей планирования.

В числителе (6.11) фактически стоит сумма средних значений выходного параметра по всем опытам с учетом уровня независимой переменной Xi в x-м опыте.

По формуле (6.11) можно найти также коэффициенты bij при произведениях факторов XiXj (i ≠ j). Значения этих коэффициентов показывают уровень влияния эффекта взаимодействия факторов Xi и Xj .

Читать еще:  Факторный анализ цены

После вычисления коэффициентов оценивается их значимость для определения степени влияния различных факторов на выходной параметр (функцию отклика). Основой оценки значимости является сопоставление абсолютного значения, например, коэффициента bi и дисперсии ошибки его определения S 2 i>. В этом случае с помощью t-критерия (критерия Стьюдента) проверяется гипотеза о незначимости рассматриваемого коэффициента, то есть гипотеза о том, что bi=0 (проверка нуль-гипотезы). Значение параметра определяется по формуле:

(6.12)

При ортогональном планировании эксперимента дисперсии ошибок определения каждого из коэффициентов равны между собой

(6.13)

Дисперсия воспроизводимости S 2 оценивается по формуле

(6.14)

Коэффициент b признается значимым, если t для числа степеней свободы ν=N(n–1) больше или равен tкр (t ≥ tкр) , найденному по таблице А1 приложения А для заданного значения коэффициента риска β. В случае t 2 ( ≤S 2 ), то полученная математическая модель адекватно представляет результаты эксперимента; если >S 2 , то проверка гипотезы об адекватности проводится с помощью F-критерия (критерия Фишера) при νад=N–d и ν=N(n–1).

(6.16)

если F ≤ Fкр, то модель признается адекватной.

Очевидно, что такая проверка возможна, если νад > 0, так как при N=d не остается степеней свободы для проверки нуль-гипотезы об адекватности. В этом случае можно провести косвенную проверку адекватности, поставив ряд экспериментов в центре плана. Различие между средним значением выходной величины, полученной в этих экспериментах, и свободным членом линейного уравнения может дать представление об адекватности модели. Если это различие незначимо, то можно предположить, что модель адекватна.

При отрицательном результате проверки адекватности (модель недостаточно верно описывает процесс) необходимо либо переходить к уравнению связи более высокого порядка, так как, по-видимому, эксперимент ставился в области, близкой к экстремальной, либо, если это возможно, проводить эксперимент с меньшим интервалом варьирования ΔXi. Уменьшение интервала варьирования приводит к увеличению отношения помех к полезному сигналу, что обусловливает необходимость увеличения числа параллельных опытов для выделения сигнала на фоне шума, а также к уменьшению абсолютных значений коэффициентов bi, величины которых зависят от интервала варьирования и при чрезмерном его уменьшении могут стать статистически незначимыми.

Если полученная модель адекватна, то возможны следующие ситуации:

Читать еще:  Многофакторный корреляционный анализ

Все линейные коэффициенты значимы. Полученную модель можно использовать для управления процессом и оптимизации его путем движения по направлению к экстремуму.

Один из коэффициентов резко выделяется по абсолютной величине. В этом случае движение по градиенту функции выродится в обычный однофакторный эксперимент. Поэтому следует повторить эксперимент, уменьшив интервал варьирования этого фактора или увеличив его для других факторов.

Некоторые из линейных коэффициентов незначимы. Ими можно пренебречь, если соответствующие факторы действительно не оказывают влияния на выходной параметр (например, если незначимым оказался включенный в исследование из осторожности фактор, который и по априорным сведениям не должен оказывать существенного влияния на функцию отклика). Если в этом уверенности нет, то необходимо поставить новую серию опытов, расширив интервалы варьирования у соответствующих факторов.

Некоторые или все линейные коэффициенты незначимы, но значимы коэффициенты взаимодействия bij. Такое положение может возникнуть из-за неудачного выбора интервалов варьирования, поэтому надо поставить новую серию опытов, увеличив интервалы варьирования у соответствующих факторов. Причиной подобной ситуации может быть и то, что эксперимент ставился в области, в которой линейное приближение является неудачной моделью поверхности отклика. В этом случае переходят к нахождению математической модели более высокого порядка.

Планирование обработка и анализ эксперимента

При проведении научных экспериментов и технологических расчетов наряду с субстанционным (изготовление физического образца материала) и структурно-имитационным (имитация взаимодействия структурных элементов системы) моделированием широко применяется функциональное моделирование, результатом которого является получение некой математической функции, описывающей поведение объекта исследования, абстрагируясь от внутренней структуры вещественного субстрата. Функциональная модель работает по принципу «черного ящика», при этом известны параметры «входа» – переменные или постоянные факторы, а также, параметры «выхода» – критерий эффективности, отклик и т.д. [1, 2, 3]. К примеру, построение функциональных моделей эксперимен-тальных зависимостей свойств бетона от его состава включает в себя следующие этапы:

  • уточнение в зависимости от конкретной задачи оптимизируемых параметров (прочности бетона, удобоукладываемости бетонной смеси и др.);
  • выбор факторов, определяющих изменчивость оптимизируемых параметров; ‒ определение основного исходного состава бетонной смеси; ‒ выбор интервалов варьирования факторов;
  • выбор плана и условий проведения эксперимента;
  • обработка результатов эксперимента с построением математических моделей зависимостей свойств бетонной смеси и бетона от выбранных факторов.
Читать еще:  Факторный анализ структура продаж

Планирование эксперимента – это процедура выбора числа и условий проведения опытов, необходимых и достаточных для решения поставленной задачи с требуемой точностью.

Рассмотрим процесс математического планирования и обработки данных факторного эксперимента с применением программно-алгоритмических средств на примере компьютерной программы «PlanExp B-D13», разработанной в среде программирования Microsoft Visual Basic 6.0. Разработанный программный продукт позволяет производить моментальный расчет плана эксперимента по заданным переменным факторам, рассчитывать коэффициенты уравнения математической модели, проводить статистическую оценку адекватности математической модели, строить диаграммы линий равного уровня с возможностью обнаружения точки экстремума, а также, автоматически формировать отчет по итогам эксперимента. Программа ориентирована на работу с трехфакторным планом эксперимента B-D13, который позволяет получать нелинейные квадратичные модели, и обладает хорошими статистическими характеристиками.

Алгоритм программы включает основные процедуры – процедуру расчета коэффициентов функции отклика, процедуру статистической обработки и процедуру визуализации математической модели. Все основные вычисления производятся циклично, что позволяет моментально перестраивать математическую модель, изменяя входные данные. Кроме того, алгоритм включает вспомогательную процедуру, обеспечивающую проверку синтаксической правильности вводимых данных. При допущении ошибок ввода данных программа корректирует действия пользователя средствами текстового оповещения.

Интерфейс программного продукта реализован в виде логических блоков, позволяющих вводить исходные данные и изменять параметры вывода математической модели в интерактивном режиме (рисунок 1).

Рисунок 1 – Интерфейс программы обработки данных трехфакторных планированных экспериментов

Опишем порядок работы с программой на примере планированного эксперимента по исследованию зависимости прочности бетона от рецептурных факторов.

В первом логическом блоке устанавливаются входные факторы эксперимента. В эксперименте варьируются: количество вяжущей части бетона; содержание наполнителя и количество добавки – гиперпластификатора. Значения факторов задаются в натуральном виде (граммы, проценты и т.д.). Пользователь заполняет текстовые поля – основной уровень факторов, интервал варьирования и наименование фактора (рисунок 2).

Рисунок 2 – Блок ввода значений входных факторов

В расчете факторного плана значения уровней входных факторов принимаются в кодированном виде, при этом, основной уровень (центр плана) каждого фактора обозначается как «0», а нижний и верхний уровни: «–1» и «+1» соответственно. Пересчет заданных пользователем натуральных значений факторов производится путем линейной интерполяции значений:

Ссылка на основную публикацию
Adblock
detector