Webbc.ru

Веб и кризис
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Назначение корреляционного анализа

Назначение корреляционного анализа

Задача корреляционного анализа состоит в количественном определении тесноты связи между двумя признаками и статистической оценке надежности установленной связи.

Условия применения анализа.

1. Корреляционный анализ можно применять только в том случае, когда данные наблюдения или эксперимента можно считать случайными и выбранными из нормальной совокупности.

2. Выборки из изучаемых генеральных совокупностей должны быть достаточно большого объема, так как для статистической методологии важное значение имеет закон больших чисел. Его содержание сводится к следующему: в массе индивидуальных явлений общая закономерность проявляется тем полнее и точнее, чем больше их охвачено наблюдением, только в этом случае происходит взаимопогашение индивидуальных значений признака от средней величины.

3. Отдельные наблюдения должны быть независимыми, то есть результаты, полученные в отдельном наблюдении, не должны содержать информацию о последующих наблюдениях и не должны быть связаны с будущими.

Алгоритм применения корреляционного анализа.

Основной оценкой для тесноты связи между переменными и служит выборочный коэффициент корреляции r, который определяется по формуле

Свойства выборочного коэффициента корреляции:

1. Коэффициент корреляции принимает значения на отрезке [-1; 1], то есть .

В зависимости от того насколько приближается к 1, различают слабую, умеренную и сильную связь, то есть чем ближе к 1, тем теснее связь.

2. Если , то корреляционная связь между и представляет собой линейную зависимость.

Запишем более подробно формулу для вычисления коэффициента корреляции: .

Замечание. Приведена формула для не сгруппированных данных.

Так как r вычисляется по данным выборки, то в отличие от генерального коэффициента корреляции, является величиной случайной. Если , то возникает вопрос, объясняется ли это действительно существующей линейной связью между и или вызвано случайными факторами. Для выяснения этого вопроса проведем проверку статистической гипотезы.

: корреляционная связь отсутствует между переменными и , то есть .

Вычислим эмпирическое значение критерия . находим в таблице распределения Стьюдента критическое значение , определенное на уровне значимости и числом степеней свободы . Если , то гипотеза отвергается.

Пример. Фирма провела рекламную компанию. Через 10 недель фирма решила проанализировать эффективность этого вида рекламы, сопоставляя недельные объемы продаж с расходами на рекламу .

Корреляционный анализ и сущность корреляционной связи

Общие приемы и математические методы изучения и измерения связей общественных явлений.

Существуют два типа зависимости между общественными явлениями:

При корреляционной связи определенному изменению одного явления соответствует в отдельных случаях различные по величине и направлению изменения другого явления.

Корреаляционная связь существует напрямую между уровнем квалификации и размером заработной платы работников, между величиной мощности заводского оборудования и объемом продукции предприятия, а также в бесчисленном множестве случаев.

При функциональной связи изменению одного явления соответствует строго определенные изменения другого явления, находящегося с ним в причинно-следственной связи.

При корреляционной связи изменению одного явления соответствует различные по величине и направлению изменения другого явления.

В теории статистики различают следующие виды признаков, корреляционная связь между которыми является предметом изучения:

1. Факториальные – признаки или факторы, обуславливающие изменение других признаков

2. Результативные или признаки результата – изменяющиеся под воздействием факториальных признаков.

Задачи статистики при исследовании корреалиционной связи между изучаемыми явлениями:

· выявление наличия корреляционной связи

· измерение (количественное выражени) степени тесноты корреалиционной связи между признаками

Корреляционная связь обнаруживается более ясно только при рассмотрении средних значений результативного признака, соответствующего средним значениям факториального признака. Благодаря исчислению групповых средних значений, влияние прочих причин взаимно погашаются и проявляются факториальные признаки. Поэтому основным методом выявления наличия корреалиционной связи является метод аналитических группировок и определение групповых средних. Сущность его состоит в том, что совокупность результатов разбивается на группы по величине факториального признака и для каждой группы вычисляются средние величины, как среднеарифметические результативного признака.

Для решения данной задачи с методом аналитических группировок и параллельно с ним применяется также графический метод. Главным образом для предварительного анализа и оценок предшествующих статистических характеристик или показателей. Графическое изображение результатов статистического наблюдения представляет собой корреляционное поле, т.е. точечный график, для построения которого на оси абсцисс откладываются значения факториально признака х, а по оси ординат – значения результативного признака у. Каждой единице изучаемой совокупности на графике соответствует одна точка, значение которой определяется величиной двух признаков, характеризующих эту единицу.

Пример: имеющиеся следующие данные, характеризующие результативность с/х производства (таблица 4)

Зависимость сбора зерна от размера посевных площадей зерновых культур

Корреляционный анализ

экономические науки

  • Дашкина Дарья Владимировна , бакалавр, студент
  • Башкирский государственный аграрный университет
  • КОРРЕЛЯЦИОННЫЕ ПОЛЯ
  • КОРРЕЛЯЦИЯ
  • КОРРЕЛЯЦИОННЫЙ АНАЛИЗ
  • КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ

Похожие материалы

Исследователей нередко интересует, как связаны между собой две или большее количество переменных в одной или нескольких изучаемых выборках. Например, такая связь может наблюдаться между погрешностью аппаратной обработки экспериментальных данных и величиной скачков сетевого напряжения. Другим примером может служить связь между пропускной способностью канала передачи данных и соотношением сигнал/шум.

В 1886 году английский естествоиспытатель Френсис Гальтон для обозначения характера подобного рода взаимодействий ввёл термин «корреляция». Позже его ученик Карл Пирсон разработал математическую формулу, позволяющую дать количественную оценку корреляционным связям признаков.

Зависимости между величинами (факторами, признаками) разделяют на два вида: функциональную и статистическую.

При функциональных зависимостях каждому значению одной переменной величины соответствует определенное значение другой переменной. Кроме того, функциональная связь двух факторов возможна только при условии, что вторая величина зависит только от первой и не зависит ни от каких других величин. В случае зависимости величины от множества факторов, функциональная связь возможна, если первая величина не зависит ни от каких других факторов, кроме входящих в указанное множество.

Читать еще:  Анализ оборотных средств предприятия

При статистической зависимости изменение одной из величин влечёт изменение распределения других величин, которые с определенными вероятностями принимают некоторые значения.

Значительно больший интерес представляет другой частный случай статистической зависимости, когда существует взаимосвязь значений одних случайных величин со средним значением других, при той особенности, что в каждом отдельном случае любая из взаимосвязанных величин может принимать различные значения.

Такого рода зависимость между переменными величинами называется корреляционной, или корреляцией.

Корреляционный анализ — метод, позволяющий обнаружить зависимость между несколькими случайными величинами.

Корреляционный анализ решает две основные задачи:

  • Первая задача заключается в определении формы связи, т.е. в установлении математической формы, в которой выражается данная связь. Это очень важно, так как от правильного выбора формы связи зависит конечный результат изучения взаимосвязи между признаками.
  • Вторая задача состоит в измерении тесноты, т.е. меры связи между признаками с целью установить степень влияния данного фактора на результат. Она решается математически путем определения параметров корреляционного уравнения.

Затем проводятся оценка и анализ полученных результатов при помощи специальных показателей корреляционного метода (коэффициентов детерминации, линейной и множественной корреляции и т.д.), а также проверка существенности связи между изучаемыми признаками.

Методами корреляционного анализа решаются следующие задачи:

  1. Взаимосвязь. Есть ли взаимосвязь между параметрами?
  2. Прогнозирование. Если известно поведение одного параметра, то можно предсказать поведение другого параметра, коррелирующего с первым.
  3. Классификация и идентификация объектов. Корреляционный анализ помогает подобрать набор независимых признаков для классификации.

Корреляция — статистическая взаимосвязь двух или нескольких случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми). Суть ее заключается в том, что при изменении значения одной переменной происходит закономерное изменение (уменьшению или увеличению) другой переменной.

Для определения наличия взаимосвязи между двумя свойствами используется коэффициент корреляции.

Коэффициент корреляции р для генеральной совокупности, как правило, неизвестен, поэтому он оценивается по экспериментальным данным, представляющим собой выборку объема n пар значений (xi, yi), полученную при совместном измерении двух признаков Х и Y. Коэффициент корреляции, определяемый по выборочным данным, называется выборочным коэффициентом корреляции (или просто коэффициентом корреляции). Его принято обозначать символом r.

К основным свойствам коэффициента корреляции относятся:

  1. Коэффициенты корреляции способны характеризовать только линейные связи, т.е. такие, которые выражаются уравнением линейной функции. При наличии нелинейной зависимости между варьирующими признаками следует использовать другие показатели связи.
  2. Значения коэффициентов корреляции – это отвлеченные числа, лежащее в пределах от -1 до +1, т.е. -1 0 имеет место положительная корреляция (с увеличением x значения y в целом имеют тенденцию к возрастанию), при p 0,70);
  3. средняя (при 0,50

Список литературы

  1. Аблеева, А. М. Формирование фонда оценочных средств в условиях ФГОС [Текст] / А. М. Аблеева, Г. А. Салимова // Актуальные проблемы преподавания социально-гуманитарных, естественно — научных и технических дисциплин в условиях модернизации высшей школы : материалы международной научно-методической конференции, 4-5 апреля 2014 г. / Башкирский ГАУ, Факультет информационных технологий и управления. — Уфа, 2014. — С. 11-14.
  2. Ганиева, А.М. Статистический анализ занятости и безработицы [Текст] / А.М. Ганиева, Т.Н. Лубова // Актуальные вопросы экономико-статистического исследования и информационных технологий: сб. науч. ст.: посвящается к 40-летию создания кафедры «Статистики и информационных систем в экономике» / Башкирский ГАУ. — Уфа, 2011. — С. 315-316.
  3. Исмагилов, Р. Р. Творческая группа — эффективная форма организации научных исследований в высшей школе [Текст] / Р. Р. Исмагилов, М. Х. Уразлин, Д. Р. Исламгулов // Научно-технический и научно-образовательный комплексы региона : проблемы и перспективы развития : материалы научно-практической конференции / Академия наук РБ, УГАТУ. — Уфа, 1999. — С. 105-106.
  4. Исламгулов, Д.Р. Компетентностный подход в обучении: оценка качества образования [Текст] / Д.Р. Исламгулов, Т.Н. Лубова, И.Р. Исламгулова // Современный научный вестник. – 2015. – Т. 7. — № 1. – С. 62-69.
  5. Исламгулов, Д. Р. Научно-исследовательская работа студентов — важнейший элемент подготовки специалистов в аграрном вузе [Текст] / Д. Р. Исламгулов // Проблемы практической подготовки студентов в вузе на современном этапе и пути их решения : сб. материалов науч.-метод. конф., 24 апреля 2007 года / Башкирский ГАУ. — Уфа, 2007. — С. 20-22.
  6. Лубова, Т.Н. Основа реализации федерального государственного образовательного стандарта – компетентностный подход [Текст] / Т.Н. Лубова, Д.Р. Исламгулов, И.Р. Исламгулова// БЪДЕЩИТЕ ИЗСЛЕДОВАНИЯ – 2016: Материали за XII Международна научна практична конференция, 15-22 февруари 2016. – София: Бял ГРАД-БГ ООД, 2016. – Том 4 Педагогически науки. – C. 80-85.
  7. Лубова, Т.Н. Новые образовательные стандарты: особенности реализации [Текст] / Т.Н. Лубова, Д.Р. Исламгулов // Современный научный вестник. – 2015. – Т. 7. — № 1. – С. 79-84.
  8. Лубова, Т.Н. Организация самостоятельной работы обучающихся [Текст] / Т.Н. Лубова, Д.Р. Исламгулов // Реализация образовательных программ высшего образования в рамках ФГОС ВО: материалы Всероссийской научно-методической конференции в рамках выездного совещания НМС по природообустройству и водопользованию Федерального УМО в системе ВО. / Башкирский ГАУ. — Уфа, 2016. — С. 214-219.
  9. Лубова, Т.Н. Основа реализации федерального государственного образовательного стандарта – компетентностный подход [Текст] / Т.Н. Лубова, Д.Р. Исламгулов, И.Р. Исламгулова // Современный научный вестник. – 2015. – Т. 7. — № 1. – С. 85-93.
  10. Саубанова, Л.М. Уровень демографической нагрузки [Текст] / Л.М. Саубанова, Т.Н. Лубова // Актуальные вопросы экономико-статистического исследования и информационных технологий: сб. науч. ст.: посвящается к 40-летию создания кафедры «Статистики и информационных систем в экономике» / Башкирский ГАУ. — Уфа, 2011. — С. 321-322.
  11. Фахруллина, А.Р. Статистический анализ инфляции в России [Текст] / А.Р. Фахруллина, Т.Н. Лубова // Актуальные вопросы экономико-статистического исследования и информационных технологий: сб. науч. ст.: посвящается к 40-летию создания кафедры «Статистики и информационных систем в экономике» / Башкирский ГАУ. — Уфа, 2011. — С. 323-324.
  12. Фархутдинова, А.Т. Рынок труда в Республике Башкортостан в 2012 году [Электронный ресурс] / А.Т. Фархутдинова, Т.Н. Лубова // Студенческий научный форум. Материалы V Международной студенческой электронной научной конференции: электронная научная конференция (электронный сборник). Российская академия естествознания. 2013.

Электронное периодическое издание зарегистрировано в Федеральной службе по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), свидетельство о регистрации СМИ — ЭЛ № ФС77-41429 от 23.07.2010 г.

Соучредители СМИ: Долганов А.А., Майоров Е.В.

Корреляционный анализ

Корреля́ция — статистическая взаимосвязь двух или нескольких случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми). При этом, изменения одной или нескольких из этих величин приводят к систематическому изменению другой или других величин. Математической мерой корреляции двух случайных величин служит коэффициент корреляции.

Корреляция может быть положительной и отрицательной (возможна также ситуация отсутствия статистической взаимосвязи — например, для независимых случайных величин). Отрицательная корреляция — корреляция, при которой увеличение одной переменной связано с уменьшением другой переменной, при этом коэффициент корреляции отрицателен. Положительная корреляция — корреляция, при которой увеличение одной переменной связано с увеличением другой переменной, при этом коэффициент корреляции положителен.

Автокорреляция — статистическая взаимосвязь между случайными величинами из одного ряда, но взятых со сдвигом, например, для случайного процесса — со сдвигом по времени.

Метод обработки статистических данных, заключающийся в изучении коэффициентов (корреляции) между переменными, называется корреляционным анализом.

Содержание

Коэффициент корреляции

Коэффицие́нт корреля́ции или парный коэффицие́нт корреля́ции в теории вероятностей и статистике — это показатель характера изменения двух случайных величин. Коэффициент корреляции обозначается латинской буквой R и может принимать значения между -1 и +1. Если значение по модулю находится ближе к 1, то это означает наличие сильной связи (при коэффициенте корреляции равном единице говорят о функциональной связи), а если ближе к 0, то слабой.

Коэффициент корреляции Пирсона

Для метрических величин применяется коэффициент корреляции Пирсона, точная формула которого была введена Фрэнсисом Гальтоном:

Пусть X,Y — две случайные величины, определённые на одном вероятностном пространстве. Тогда их коэффициент корреляции задаётся формулой:

,

где cov обозначает ковариацию, а D — дисперсию, или, что то же самое,

,

где символ обозначает математическое ожидание.

Для графического представления подобной связи можно использовать прямоугольную систему координат с осями, которые соответствуют обеим переменным. Каждая пара значений маркируется при помощи определенного символа. Такой график называется «диаграммой рассеяния».

Метод вычисления коэффициента корреляции зависит от вида шкалы, к которой относятся переменные. Так, для измерения переменных с интервальной и количественной шкалами необходимо использовать коэффициент корреляции Пирсона (корреляция моментов произведений). Если по меньшей мере одна из двух переменных имеет порядковую шкалу, либо не является нормально распределённой, необходимо использовать ранговую корреляцию Спирмена или τ (тау) Кендала. В случае, когда одна из двух переменных является дихотомической, используется точечная двухрядная корреляция, а если обе переменные являются дихотомическими: четырёхполевая корреляция. Расчёт коэффициента корреляции между двумя недихотомическими переменными не лишён смысла только тогда, кода связь между ними линейна (однонаправлена).

Коэффициент корреляции Кенделла

Используется для измерения взаимной неупорядоченности.

Коэффициент корреляции Спирмена

Свойства коэффициента корреляции

  • Неравенство Коши — Буняковского:

если принять в качестве скалярного произведения двух случайных величин ковариацию , то норма случайной величины будет равна , и следствием неравенства Коши — Буняковского будет: .

  • Коэффициент корреляции равен тогда и только тогда, когда X и Y линейно зависимы:

, где . Более того в этом случае знаки и k совпадают: .

  • Если X,Yнезависимые случайные величины, то . Обратное в общем случае неверно.

Корреляционный анализ

Корреляционный анализ — метод обработки статистических данных, заключающийся в изучении коэффициентов (корреляции) между переменными. При этом сравниваются коэффициенты корреляции между одной парой или множеством пар признаков для установления между ними статистических взаимосвязей.

Цель корреляционного анализа — обеспечить получение некоторой информации об одной переменной с помощью другой переменной. В случаях, когда возможно достижение цели, говорят, что переменные коррелируют. В самом общем виде принятие гипотезы о наличии корреляции означает что изменение значения переменной А, произойдет одновременно с пропорциональным изменением значения Б: если обе переменные растут то корреляция положительная, если одна переменная растёт, а вторая уменьшается, корреляция отрицательная.

Корреляция отражает лишь линейную зависимость величин, но не отражает их функциональной связности. Например, если вычислить коэффициент корреляции между величинами A = sin(x) и B = cos(x) , то он будет близок к нулю, т. е. зависимость между величинами отсутствует. Между тем, величины A и B очевидно связаны функционально по закону sin 2 (x) + cos 2 (x) = 1 .

Ограничения корреляционного анализа

  1. Применение возможно в случае наличия достаточного количества случаев для изучения: для конкретного вида коэффициента корреляции составляет от 25 до 100 пар наблюдений.
  2. Второе ограничение вытекает из гипотезы корреляционного анализа, в которую заложена линейная зависимость переменных. Во многих случаях, когда достоверно известно, что зависимость существует, корреляционный анализ может не дать результатов просто ввиду того, что зависимость нелинейна (выражена, например, в виде параболы).
  3. Сам по себе факт корреляционной зависимости не даёт основания утверждать, какая из переменных предшествует или является причиной изменений, или что переменные вообще причинно связаны между собой, например, ввиду действия третьего фактора.

Область применения

Данный метод обработки статистических данных весьма популярен в экономике и социальных науках (в частности в психологии и социологии), хотя сфера применения коэффициентов корреляции обширна: контроль качества промышленной продукции, металловедение, агрохимия, гидробиология, биометрия и прочие.

Популярность метода обусловлена двумя моментами: коэффициенты корреляции относительно просты в подсчете, их применение не требует специальной математической подготовки. В сочетании с простотой интерпретации, простота применения коэффициента привела к его широкому распространению в сфере анализа статистических данных.

Ложная корреляция

Часто заманчивая простота корреляционного исследования подталкивает исследователя делать ложные интуитивные выводы о наличии причинно-следственной связи между парами признаков, в то время как коэффициенты корреляции устанавливают лишь статистические взаимосвязи.

В современной количественной методологии социальных наук, фактически, произошел отказ от попыток установить причинно-следственные связи между наблюдаемыми переменными эмпирическими методами. Поэтому, когда исследователи в социальных науках говорят об установлении взаимосвязей между изучаемыми переменными, подразумевается либо общетеоретическое допущение, либо статистическая зависимость.

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое «Корреляционный анализ» в других словарях:

КОРРЕЛЯЦИОННЫЙ АНАЛИЗ — см. АНАЛИЗ КОРРЕЛЯЦИОННЫЙ. Antinazi. Энциклопедия социологии, 2009 … Энциклопедия социологии

КОРРЕЛЯЦИОННЫЙ АНАЛИЗ — раздел математической статистики, объединяющий практические методы исследования корреляционной зависимости между двумя (или большим числом) случайными признаками или факторами. См. Корреляция (в математической статистике) … Большой Энциклопедический словарь

КОРРЕЛЯЦИОННЫЙ АНАЛИЗ — КОРРЕЛЯЦИОННЫЙ АНАЛИЗ, раздел математической статистики, объединяющий практические методы исследования корреляционной зависимости между двумя (или большим числом) случайными признаками или факторами. См. Корреляция (см. КОРРЕЛЯЦИЯ (взаимная связь … Энциклопедический словарь

Корреляционный анализ — (в экономике) [correlation analysis] ветвь математической статистики, изучающая взаимосвязи между изменяющимися величинами (корреляция соотношение, от латинского слова correlatio). Взаимосвязь может быть полная (т.е. функциональная) и неполная,… … Экономико-математический словарь

корреляционный анализ — (в психологии) (от лат. correlatio соотношение) статистический метод оценки формы, знака и тесноты связи исследуемых признаков или факторов. При определении формы связи рассматривается ее линейность или нелинейность (т. е. как в среднем… … Большая психологическая энциклопедия

корреляционный анализ — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN correlation analysis … Справочник технического переводчика

корреляционный анализ — koreliacinė analizė statusas T sritis Kūno kultūra ir sportas apibrėžtis Statistikos metodas, kuriuo įvertinami tiriamųjų asmenų, reiškinių požymiai arba veiksnių santykiai. atitikmenys: angl. correlation studies vok. Analyse der Korrelation, f;… … Sporto terminų žodynas

Корреляционный анализ — совокупность основанных на математической теории корреляции (См. Корреляция) методов обнаружения корреляционной зависимости между двумя случайными признаками или факторами. К. а. экспериментальных данных заключает в себе следующие… … Большая советская энциклопедия

КОРРЕЛЯЦИОННЫЙ АНАЛИЗ — раздел матем. статистики, объединяющий практич. методы исследования корреляц. зависимости между двумя (или большим числом) случайными признаками или факторами. См. Корреляция … Большой энциклопедический политехнический словарь

Корреляционный анализ — Один из основных методов социолингвистики, целью которого является установление соотношений между языковыми явлениями и социальными параметрами. См. также: Социолингвистическая корреляция, Социолингвистическая переменная … Словарь социолингвистических терминов

Корреляционный анализ и сущность корреляционной связи

Общие приемы и математические методы изучения и измерения связей общественных явлений.

Существуют два типа зависимости между общественными явлениями:

При корреляционной связи определенному изменению одного явления соответствует в отдельных случаях различные по величине и направлению изменения другого явления.

Корреаляционная связь существует напрямую между уровнем квалификации и размером заработной платы работников, между величиной мощности заводского оборудования и объемом продукции предприятия, а также в бесчисленном множестве случаев.

При функциональной связи изменению одного явления соответствует строго определенные изменения другого явления, находящегося с ним в причинно-следственной связи.

При корреляционной связи изменению одного явления соответствует различные по величине и направлению изменения другого явления.

В теории статистики различают следующие виды признаков, корреляционная связь между которыми является предметом изучения:

1. Факториальные – признаки или факторы, обуславливающие изменение других признаков

2. Результативные или признаки результата – изменяющиеся под воздействием факториальных признаков.

Задачи статистики при исследовании корреалиционной связи между изучаемыми явлениями:

· выявление наличия корреляционной связи

· измерение (количественное выражени) степени тесноты корреалиционной связи между признаками

Корреляционная связь обнаруживается более ясно только при рассмотрении средних значений результативного признака, соответствующего средним значениям факториального признака. Благодаря исчислению групповых средних значений, влияние прочих причин взаимно погашаются и проявляются факториальные признаки. Поэтому основным методом выявления наличия корреалиционной связи является метод аналитических группировок и определение групповых средних. Сущность его состоит в том, что совокупность результатов разбивается на группы по величине факториального признака и для каждой группы вычисляются средние величины, как среднеарифметические результативного признака.

Для решения данной задачи с методом аналитических группировок и параллельно с ним применяется также графический метод. Главным образом для предварительного анализа и оценок предшествующих статистических характеристик или показателей. Графическое изображение результатов статистического наблюдения представляет собой корреляционное поле, т.е. точечный график, для построения которого на оси абсцисс откладываются значения факториально признака х, а по оси ординат – значения результативного признака у. Каждой единице изучаемой совокупности на графике соответствует одна точка, значение которой определяется величиной двух признаков, характеризующих эту единицу.

Пример: имеющиеся следующие данные, характеризующие результативность с/х производства (таблица 4)

Зависимость сбора зерна от размера посевных площадей зерновых культур

Ссылка на основную публикацию
Adblock
detector