Webbc.ru

Веб и кризис
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Количественный анализ определение

Количественный анализ. Количественный анализ – определение содержания (концентрации, массы и т.п.) компонентов в анализируемом веществе;

Количественный анализ – определение содержания (концентрации, массы и т.п.) компонентов в анализируемом веществе. Количественный анализ проводят в определенной последовательности: отбор и подготовка проб, проведение анализа, обработка и расчет результатов анализа.

Гравиметрия – (гравиметрический анализ; весовой анализ) методы количественного анализа, основанные на измерении массы веществ. Из части исследуемого вещества известной массы (навески) определяемый компонент выделяют тем или иным способом. Зная массы навески (а) и весовой формы (в) рассчитывают содержание х (%масс.) определяемого компонента х = в/а∙100.

Титриметрия — методы количественного анализа, основанные на измерении количества вещества (реагента), необходимого для взаимодействия с определяемым компонентом в растворе или газовой фазе в соответствии со стехиометрией химической реакции между ними. При проведении анализа модно контролировать либо объем, либо массу добавляемого титранта – раствора или газовой смеси с точно известной концентрацией реагента.

Спектральный анализ — метод качественного и количественного определения состава веществ, основанный на исследовании их спектров испускания, поглощения, отражения и люминесценции. Спектры возникают при переходах между уровнями энергии в атомах, молекулах и образованных из них макроскопических системах. Различают:

· атомный и молекулярный спектральный анализы – определение соответствующего элементного и молекулярного состава вещества;

· эмиссионный спектральный анализ проводят по спектрам испускания атомов, ионов или молекул, возбужденных различным способом;

· абсорбционный спектральный анализ проводят по спектрам поглощения электромагнитного излучения анализируемыми объектами.

В зависимости от цели исследования, свойств анализируемого вещества, специфики используемых спектров, области длин волн, способы измерения спектров и других факторов спектральный анализ подразделяют на ряд самостоятельных методов.

По диапазону длин волн (или частот) электромагнитного излучения выделяют радиоспектроскопию, микроволновую спектроскопию, оптическую спектроскопию.

Спектрофотометрия (оптическая спектроскопия) – метод исследования и анализа веществ, основанный на измерении спектров поглощения в оптической области электромагнитного излучения: изучают зависимость интенсивности поглощения светового потока от длины волны. В основе лежит основной закон поглощения оптического излучения (закон Бугера – Ламберта – Бера), отражающий количественное соотношение между интенсивностью светового потока, падающего на образец. И интенсивностью светового потока, прошедшего через образец. Различают спектрофотометрию в ИК области спектра (инфракрасная спектроскопия), видимой и УФ области спектра (ультрафиолетовая спектроскопия).

Вольтамперометрия электрохимический метод анализа, основанный на изучении зависимости силы тока в электролитической ячейке от потенциала погруженного в анализируемый раствор индикаторного микроэлектрода. Разновидностью вольтамперометрии является полярография, где используется индикаторный микроэлектрод из жидкого металла, поверхность которого периодически или непрерывно обновляется.

Потенциометрия – электрохимический метод анализа, основанный на изучении электродного потенциала от компонентов электрохимической реакции. При потенциометрических измерениях составляют гальванический элемент с индикаторным электродом, потенциал которого зависит от активности хотя бы одного из компонентов электрохимической реакции и электродом сравнения, и измеряют ЭДС этого элемента.

Кулонометрия – электрохимический метод анализа, основанный на измерении электропроводности жидких электролитов, которая пропорциональна их концентрации.

Калориметрия – метод измерения количества теплоты, выделяющейся или поглощающейся в процессе.

Хроматография – совокупность методов и процессов разделения, анализа и физико-химических исследований смесей растворенных веществ, где используется разделяющая среда (неподвижная фаза) и какой-либо растворитель (подвижная фаза). Метод основан на различии в скоростях перемещения концентрационных зон исследуемых компонентов в потоке подвижной фазы относительно слоя неподвижной фазы. Одна из разновидностей – адсорбционная хроматография – основана на различной избирательной сорбируемости разделяемых веществ адсорбентом.

Электроотрицательность элементов (по Полингу)

Понятие и методы качественного и количественного анализа

Качественный и количественный анализ являются предметом аналитической химии. Аналитическая химия занимается исследованием экспериментальных методов определения состава веществ. Определение состава веществ включает выявление природы компонентов, из которых состоит исследуемое вещество, и установление количественных соотношений этих компонентов.

Сначала устанавливают качественный состав исследуемого объекта, т.е. решают вопрос, из чего он состоит, а затем приступают к определению количественного состава, т.е. узнают, в каких количественных соотношениях обнаруженные составные части находятся в объекте исследования.

Качественный анализ вещества можно проводить химическими, физическими, физико-химическими методами.

Химические методы анализаоснованы на применении характерных химических реакций для установления состава анализируемого вещества.

Химический анализ вещества проводят двумя способами: «сухим путем» или «мокрым путем». Анализ сухим путем — это химические реакции, происходящие с веществами при накаливании, сплавлении и окрашивании пламени.

Анализ мокрым способом — это химические реакции, протекающие в растворах электролитов. Анализируемое вещество предварительно растворяют в воде или других растворителях. В зависимости от массы или объема взятого для анализа вещества, от применяемой техники различают макро-, полумикро- и микрометоды.

Макрометод. Для проведения анализа берут 1-2 мл раствора, содержащего не менее 0,1 г вещества, и добавляют не менее 1 мл раствора реактива. Реакции проводят в пробирке, осадок отделяют фильтрованием. Осадок на фильтре промывают от примесей.

Полумикрометод. Для анализа берут в 10-20 раз меньше вещества (до 0,01 г). Так как в этом методе работают с малыми количествами вещества, то пользуются микропробирками, часовыми или предметными стеклами. Для отделения осадка от раствора применяют центрифугирование.

Микрометод. При выполнении анализа данным методом берут одну-две капли раствора, а сухого вещества — в пределах 0,001г. Характерные реакции проводят на часовом стекле или фарфоровой пластинке.

При проведении анализа пользуются следующими операциями: нагревание и выпаривание, осаждение, центрифугирование, проверка полноты осаждения, отделение раствора (центрифуга) от осадка, промывание и растворение осадка.

Нагревание растворов можно вести непосредственно пламенем газовой горелки, на асбестовой сетке или водяной бане. Небольшое количество раствора нагревают до температуры, не превышающей 100°С, на водяной бане, вода в которой должна кипеть равномерно.

Для концентрирования растворов применяют водяную баню. Выпаривание раствора до сухого остатка проводят в фарфоровых чашках или тиглях, нагревая их на асбестовой сетке. Если сухой остаток после выпаривания необходимо прокалить для удаления летучих солей, то тигель ставят на фарфоровый треугольник и нагревают пламенем газовой горелки.

Осаждение. Реакцию осаждения проводят в конических колбах или цилиндрической пробирках. В исследуемый раствор приливают пипеткой реактив-осадитель. Осадитель берут в избытке. Смесь тщательно перемешивают стеклянной палочкой и потирают о внутренние стенки пробирки, это ускоряет процесс образования осадка. Осаждение часто ведут из горячих растворов.

Центрифугирование. Осадок отделяют от раствора центрифугированием, используя ручную или электрическую центрифугу. Пробирку с раствором и осадком помещают в гильзу. Центрифуга должна быть загружена равномерно. При быстром вращении центробежная сила отбрасывает частицы осадка на дно и уплотняет его, а раствор (центрифугат) становится прозрачным. Время вращения составляет от 30 с до нескольких минут.

Читать еще:  Анализ инновационной деятельности на примере предприятия

Проверка полноты осаждения. Пробирку осторожно вынимают из центрифуги и добавляют по стенке 1-2 капли реактива-осадителя к прозрачному раствору. Если раствор не мутнеет, значит осаждение полное. Если же наблюдается помутнение раствора, то в пробирку еще добавляют осадитель, содержимое перемешивают, нагревают и вновь центрифугируют, затем повторяют проверку полноты осаждения.

Отделение раствора (центрифугата) от осадка. Убедившись в полноте осаждения, отделяют раствор от осадка. Раствор от осадка отделяют капельной пипеткой. Пипетку закрывают указательным пальцем и осторожно вынимают из пробирки. Если отобранный раствор необходим для анализа, то его переносят в чистую пробирку. Для полного отделения операцию повторяют несколько раз. При центрифугировании осадок может плотно осесть на дно пробирки, тогда раствор отделяют декантацией (осторожно сливают).

Промывание осадка. Осадок (если он исследуется) необходимо хорошо отмыть; для этого приливают промывную жидкость, чаще всего дистиллированную воду. Содержимое тщательно перемешивают стеклянной палочкой и центрифугируют, затем промывную жидкость отделяют. Иногда в работе эту операцию повторяют 2-3 раза.

Растворение осадка. Для растворения осадка в пробирку добавляют растворитель, помешивая стеклянной палочкой. Нередко растворение осадка ведут при нагревании на водяной бане.

Для определения количественного состава вещества или продукта используются реакции нейтрализации, осаждения, окисления — восстановления, комплексообразования. Количество вещества можно определить по его массе или объему раствора, затраченного на взаимодействие с ним, а также по показателю преломления раствора, его электрической проводимости или интенсивности окраски и т.п.

По количеству взятого для исследования вещества аналитические методы количественного анализа классифицируются следующим образом: макроанализ — 1-10 г твердого вещества, 10-100 мл анализируемого раствора; полумикроанализ — 0,05-0,5 твердого вещества, 1-10 мл анализируемого раствора; микроанализ — 0,001-1-10- 4 г твердого вещества, 0,1-1*10- 4 мл анализируемогораствора. В товароведной практике часто пользуются гравиметрическим (весовым) и титриметрическим (объемным) методами.

Гравиметрический (весовой) анализ — один из методов количественного анализа, который позволяет определять состав анализируемого вещества путем измерения массы. Измерение массы (взвешивание) выполняется на аналитических весах с точностью 0,0002 г. Этот метод часто используется в пищевых лабораториях для определения влажности, зольности, содержания отдельных элементов или соединений. Анализ может быть выполнен одним из следующих способов.

1. Определяемую составную часть количественно (полностью, насколько это возможно) выделяют из исследуемого вещества и взвешивают. Так определяют зольность продуктов. Взвешенный на аналитических весах исходный продукт (навеску) сжигают, полученную золу доводят до постоянной массы (прокаливают до тех пор, пока не перестанет изменяться масса) и взвешивают.

Зольность продукта х (%) рассчитывают по формуле

,

где В — масса прокаленной золы, г;

А — исходная навеска продукта, г.

2. Из навески исходного вещества полностью удаляют определяемую составную часть и остаток взвешивают. Так определяют влажность продуктов, при этом навеску исходного вещества высушивают в сушильном шкафу до постоянной массы.

Влажность продукта х (%) рассчитывают по формуле

где А – исходная навеска продукта, г;

В – масса навески после высушивания, г.

Объемный анализ — метод количественного анализа, где искомое вещество определяют по объему реактива с точно известной концентрацией, затраченному на реакцию с этим веществом.

При определении объемным методом к известному объему раствора определяемого вещества малыми порциями (по каплям) добавляют реактив с точно известной концентрацией до тех пор, пока его количество не будет эквивалентно количеству определяемого вещества. Раствор реактива с точно известной концентрацией называется титрованным, рабочим или стандартным раствором.

Процесс медленного прибавления титрованного раствора к раствору определяемого вещества называется титрованием. Момент, когда количество титрованного раствора будет эквивалентно количеству определяемого вещества, называется точкой эквивалентности или теоретической точкой конца титрования. Для определения точки эквивалентности пользуются индикаторами, которые вблизи ее претерпевают видимые изменения, выражающиеся в изменении цвета раствора, появлении помутнения или выпадении осадка.

Важнейшие условия для правильного проведения объемно-аналитических определений: 1) возможность точного измерения объемов растворов; 2) наличие стандартных растворов с точно известной концентрацией; 3) возможность точного определения момента окончания реакции (правильный выбор индикатора).

В зависимости от того, на какой реакции основано определение, различают следующие разновидности объемного метода:

· метод окисления — восстановления

· метод осаждения и комплексообразования.

В основе метода нейтрализации лежит реакция взаимодействия ионов Н + и ОН — . Метод применяется для определения кислот, оснований и солей (которые реагируют с кислотами или основаниями) в растворе. Для определения кислот используют титрованные растворы щелочей КОН или NаОН, для определения оснований — растворы кислот НС1, Н2SO4.

Для определения содержания, например, кислоты в растворе точно отмеренный пипеткой объем раствора кислоты в присутствии индикатора титруют раствором щелочи точно известной концентрации. Точку эквивалентности определяют по изменению цвета индикатора. По объему щелочи, израсходованной на титрование, вычисляют содержание кислоты в растворе.

Метод окисления — восстановления основан на окислительно-восстановительных реакциях, происходящих между стандартным раствором и определяемым веществом. Если стандартный раствор содержит окислитель (восстановитель), то определяемое вещество должно содержать соответственно восстановитель (окислитель). Метод окисления-восстановления подразделяется, в зависимости от используемого стандартного раствора на метод перманганатометрии, метод иодометрии и др.

В основе метода осаждения лежат реакции, сопровождающиеся выпадением осадка. В отличие от гравиметрического метода обработку осадка здесь не производят, массу исследуемого вещества определяют по объему реактива, израсходованному на реакцию осаждения.

Количественный анализ (химия)

Количественный анализ — совокупность методов аналитической химии для определения количества (содержания) элементов (ионов), радикалов, функциональных групп, соединений или фаз в анализируемом объекте.

Содержание

Цели количественного анализа

Количественный анализ позволяет установить элементный и молекулярный состав исследуемого объекта или содержание отдельных его компонентов.

В зависимости от объекта исследования различают неорганический и органический анализ. В свою очередь их разделяют на элементный анализ, задача которого — установить, в каком количестве содержатся элементы (ионы) в анализируемом объекте, на молекулярный и функциональный анализы, дающие ответ о количественном содержании радикалов, соединений, а также функциональных групп атомов в анализируемом объекте.

Методы количественного анализа

Полную классификацию методов количественного анализа см. в статье Аналитическая химия.

Инструментальные методы анализа

Классификацию инструментальных методов анализа см. в статье Инструментальные методы анализа

Полярография

ПОЛЯРОГРАФИЯ, разновидность вольтамперометрии с использованием индикаторного микроэлектрода из жидкого металла поверхность которого периодически или непрерывно обновляется. При этом не происходит длительного накопления продуктов электролиза на поверхности раздела электрод-раствор в электролитической ячейке. Индикаторным электродом в полярография служит чаще всего ртутный капающий электрод. Используют также капающие электроды из жидких амальгам и расплавов, струйчатые электроды из жидких металлов, многокапельные электроды, в которых жидкий металл или расплав продавливают через диски из пористого стекла, и др.

Читать еще:  Анализ и синтез

В соответствии с рекомендациями ИЮПАК различают несколько вариантов полярография: постояннотоковая полярография (исследует зависимость тока I от потенциала Е индикаторного микроэлектрода), осциллополярография (зависимость dE/dt от t при заданном I(t), где t -время), полярография с разверткой I (зависимость Е от I), разностная полярография (зависимость разности токов в двух ячейках от Е), полярография с однократной или многократной разверткой Е за время жизни каждой капли, циклическая полярография с треугольной разверткой Е, полярография со ступенчатой разверткой Е, разл. виды переменнотоковой и импульсной полярография и др.

Фотометрия и спектрофотометрия

Метод основан на использовании основного закона светопоглощения. A=ELC. Где A-поглощение света, E-молярный коэффициент светопоглощения, L-длина поглощающего слоя в сантиметрах, C-концентрация раствора. Существуют несколько методов фотометрии:

  1. Атомно-абсорбционная спектроскопия
  2. Атомно-эмиссионная спектроскопия.
  3. Молекулярная спектроскопия.

Атомно-абсорбционная спектроскопия

Чтобы провести анализ с помощью этого метода, необходим спектрометр. Суть анализа состоит в том, чтобы просветить монохромным светом атомизированную пробу, затем разложить свет, прошедший через пробу любым световым диспергатором и детектором зафиксировать поглощение. Для атомизации пробы применяются атомизаторы. (пламя, высоковольтная искра, индуктивно-связанная плазма). У каждого из атомизатров есть свои плюсы и минусы. Для разложения света используют диспергаторы (дифракционная решетка, призма, светофильтр).

Атомно-эмиссионная спектроскопия

Этот метод немного отличается от атомно-абсорбционного метода. Если в нем источником света был отдельный источник, то в атомно-эмиссионном методе источником излучения служит сама проба. В остальном все похоже.

Качественный анализ и количественный анализ 2020

Качественный и количественный анализ — два фундаментальных метода сбора и интерпретации данных в исследованиях. Эти методы могут использоваться независимо или одновременно, поскольку все они имеют одни и те же цели. У них есть некоторые ошибки, и поэтому одновременное использование их может компенсировать ошибки, которые каждый из них имеет, а затем дает качественные результаты.

Более того, в количественном и качественном анализе имеются совпадения. В этой статье раскрываются ключевые различия между этими двумя методами анализа исследований.

Что такое количественный анализ?

Количественный анализ часто связан с численным анализом, когда данные собираются, классифицируются, а затем вычисляются для определенных результатов с использованием набора статистических методов. Данные выбираются случайным образом в больших образцах и затем анализируются. Преимущество количественного анализа результатов может быть применено в общей популяции с использованием моделей исследований, разработанных в образце. Это является недостатком качественного анализа данных из-за ограниченного обобщения результатов.

Количественный анализ носит более объективный характер. Он стремится понять возникновение событий, а затем описать их с использованием статистических методов. Однако более ясность может быть получена путем одновременного использования качественных и количественных методов. Количественный анализ обычно оставляет случайные и скудные события в результатах исследований, тогда как качественный анализ их рассматривает.

Количественный анализ обычно касается измеряемых величин, таких как вес, длина, температура, скорость, ширина и многое другое. Данные могут быть выражены в табличной форме или в любом графическом представлении с использованием графиков или диаграмм. Количественные данные можно классифицировать как непрерывные или дискретные, и их часто получают с помощью обследований, наблюдений, экспериментов или интервью.

Однако в количественном анализе имеются ограничения. Например, может быть сложно выявить относительно новые концепции, используя количественный анализ, и именно там, где качественный анализ входит в уравнение, чтобы выяснить «почему» возникает определенное явление. Вот почему методы часто используются одновременно.

Что такое качественный анализ?

Качественный анализ связан с анализом данных, которые не могут быть количественно определены. Этот тип данных касается понимания и понимания свойств и атрибутов объектов (участников). Качественный анализ может получить более глубокое понимание «почему» происходит определенное явление. Анализ может использоваться в сочетании с количественным анализом или предшествующим ему.

В отличие от количественного анализа, который ограничен определенными правилами или цифрами классификации, анализ качественных данных может быть широким и многогранным. И это субъективно, описательно, нестатистическое и исследовательское по своей природе.

Поскольку качественный анализ стремится получить более глубокое понимание, исследователь должен быть хорошо округлен с учетом каких-либо физических свойств или атрибутов, на которых основано исследование. Часто исследователь может иметь отношения с участниками, где раскрываются их характеристики. В количественном анализе характеристики объектов часто не раскрываются. Типичные проанализированные данные качественно включают цвет, пол, национальность, вкус, внешний вид и многое другое, пока данные не могут быть вычислены. Такие данные получены с помощью интервью или наблюдений.

В качественном анализе есть ограничения. Например, он не может быть использован для обобщения населения. Небольшие образцы используются в неструктурированном подходе, и они не являются репрезентативными для общей популяции, поэтому этот метод не может быть использован для обобщения всей популяции. Вот где количественный анализ в фактор.

Основные различия между качественным и количественным анализом

Определение качественного и количественного анализа

Анализ качественных данных основан на классификации объектов (участников) в соответствии со свойствами и атрибутами, тогда как количественный анализ основан на классификации данных на основе вычислимых значений. Качественный анализ субъективен, тогда как количественный является объективным.

Сбор данных для качественного и количественного анализа

В качественном анализе данные собираются небольшими нерепрезентативными образцами неструктурированным способом. Типичные собранные данные включают цвет, расу, религию, национальность и многое другое. В количественном анализе, с другой стороны, данные собираются в больших репрезентативных выборках, которые могут обобщать всю популяцию.

Методология исследования, связанная с качественным и количественным анализом

Методика качественного анализа является исследовательской, где анализ стремится получить более глубокое понимание того, почему происходит определенное явление. Методология количественного анализа может быть убедительна, например, сколько или сколько раз происходит определенное явление, а не почему это происходит.

Результаты исследований

В качественном анализе результаты исследований специфичны для изучаемых объектов и не применимы к общей популяции, тогда как в количественном анализе результаты могут быть применимы для населения в целом.

Метод сбора данных

В качественном анализе исследователи часто задают открытые вопросы, проводят собеседования и наблюдения, тогда как в количественном анализе исследователи проводят измерения, проводят опросы, эксперименты и наблюдения.

Читать еще:  Анализ отклонений план факт

Цель качественного и количественного анализа

Качественный анализ направлен на более глубокое понимание социальных взаимодействий, в то время как количественный анализ направлен на проверку гипотез и даже дает будущие прогнозы

Классификация методов количественного анализа. Основные этапы количественного анализа

Количественный анализ — совокупность методов аналитической химии, задачей которых является определение количественного содержания отдельных составных частей в исследуемом веществе.

В зависимости от объекта исследования различают неорганический и органический анализ. В свою очередь их разделяют на элементный анализ, задача которого — установить, в каком количестве содержатся элементы в анализируемом объекте, на молекулярный и функциональный анализы, дающие ответ о количественном содержании радикалов, соединений, а также функциональных групп атомов в анализируемом объекте.

Методы количественного анализа подразделяются на химические, физико-химические и физические. К классическим химическим методам количественного анализа относятся гравиметрический и объёмный анализ.

Наряду с классическими химическими методами широко распространены физические и физико-химические (инструментальные) методы, основанные на измерении оптических, электрических, адсорбционных, каталитических и других характеристик анализируемых веществ, зависящих от их количества (концентрации). Обычно эти методы делят на следующие группы: электрохимические (кондуктометрия, полярография, потенциометрия и др.); спектральные, или оптические (эмиссионный и абсорбционный спектральный анализ, фотометрия, люминесцентный анализ и др.); рентгеновские; хроматографические; радиометрические; масс-спектрометрические. Перечисленные методы, уступая химическим в точности, существенно превосходят их по чувствительности, избирательности и скорости выполнения.

В данном курсе будут рассмотрены только классические химические методы количественного анализа.

Гравиметрический анализ основан на точном измерении массы определяемого компонента в чистом виде или в виде его соединения. Объёмный анализ включает титриметрический объёмный анализ — методы измерения объёма раствора реагента с точно известной концентрацией, израсходованного на реакцию с анализируемым веществом, и газовый объёмный анализ — методы измерения объёма анализируемых газообразных продуктов.

В ходе количественного анализа можно выделить следующие основные этапы.

1. Отбор, усреднение пробы и взятие навески.Отбор пробы часто определяет общую погрешность анализа и делает бессмысленным применение высокоточных методов. Цель пробоотбора – получить относительно небольшое количество исходного вещества, в котором количественное содержание всех компонентов должно быть равно количественному содержанию их во всей массе анализируемого вещества. Первичная проба отбирается непосредственно из анализируемого объекта путем объединения необходимого числа точечных проб. Способы отбора пробы определяются следующими факторами: агрегатное состояние анализируемого объекта (газ, жидкость, твердое вещество); неоднородность анализируемого материала; требуемая точность оценки содержания компонента по всей массе анализируемого объекта (физиологически активный компонент в лекарстве – бόльшая точность, чем компонент в руде для оценки рентабельности месторождения), возможность изменения состава объекта во времени. Жидкие и газообразные материалы, как правило, однородны, и их пробы уже являются усредненными. Твердые материалы неоднородны по объему, поэтому для их анализа отбирают части вещества из разных зон исследуемого материала. Первичная проба достаточно большая – обычно 1-50 кг, а для некоторых объектов (например, для руды) составляет 0,5-5 т.

Из первичной пробы путем ее сокращения отбирают среднюю (представительную) пробу (обычно от 25 г до 1 кг). Для этого первичную пробу измельчают, перемешивают и усредняют по составу, например, квартованием. При квартовании измельченный материал рассыпают ровным слоем в виде квадрата (или круга), делят на четыре сектора, содержимое двух противоположных секторов отбрасывают, а двух остальных соединяют вместе. Операцию квартования повторяют многократно, пока не будет получено необходимое количество средней пробы.

Из полученного таким образом однородного материала берут навески для анализа, одну часть сохраняют для возможных арбитражных анализов (контрольная проба), другую – непосредственно используют для анализа (анализируемая проба).

Часть анализируемой пробы с точно измеренной на аналитических весах массой называют навеской.Анализируемая проба должна быть достаточно большой, чтобы получить несколько навесок.

2. Разложение (вскрытие) пробы.Этот этап заключается в переводе анализируемой пробы в удобное для анализа агрегатное состояние или соединение. Для перевода пробы в раствор в химических методах ее непосредственно обрабатывают жидкими растворителями (водой, кислотами, щелочами) или после разрушения пробы (путем прокаливания, сожжения, сплавления или спекания) переводят ее в соединения, способные растворяться.

3. Разделение, выделение определяемого компонента и его концентрирование. Так как большинство аналитических методов недостаточно селективно, используют методы разделения анализируемой смеси или выделения из нее определяемого вещества. В случае, когда концентрация определяемого вещества меньше предела обнаружения данного метода или меньше нижней границы его рабочего диапазона, то применяют концентрирование определяемого вещества. Для разделения, выделения и концентрирования используют химические (маскирование, осаждение и соосаждение), физические (методы испарения: отгонку, перегонку (дистилляцию), возгонку (сублимацию) и др.) и физико-химические методы (экстракция, сорбция, ионный обмен, хроматография и различные электрохимические методы, например электролиз, электрофорез, электродиализ и др.).

4. Проведение количественного определения. Все предварительные стадии анализа должны обеспечить получение достоверного результата при проведении анализа. Выбор метода анализа должен основываться на таких показателях, как скорость, удобство, правильность, наличие подходящего оборудования, число анализов, размер анализируемой пробы, содержание определяемого компонента. Сопоставляя чувствительность различных методов и оценивая примерное содержание компонента в образце, химик выбирает тот или иной метод анализа. Например, для определения натрия в силикатных породах используют гравиметрический метод, позволяющий определять миллиграммовые и более высокие количества натрия; для определения микрограммовых количеств того же элемента в растениях и биологических объектах – метод пламенной фотометрии; для определения натрия в воде особой чистоты (нано- и пикограммовые количества) – метод лазерной спектроскопии.

5. Расчеты результатов анализа и оценка результатов измерения — заключительная стадия аналитического процесса. После вычисления результатов анализа важно оценить их достоверность, учитывая правильность использованного метода и статистически обрабатывая числовые данные.

Контрольные вопросы

1. В чем состоит задача количественного анализа?

2. Перечислите методы количественного анализа.

3. Что такое гравиметрический анализ?

4. В чем сущность титриметрического анализа?

5. Перечислите основные этапы анализа и охарактеризуйте их.

6. Как проводят отбор средней пробы? Что такое квартование пробы?

7. Что такое навеска?

8. Какие приемы используют для вскрытия пробы и выделения из нее определяемого компонента?

Список рекомендуемой литературы

1. Васильев В.П. Аналитическая химия. Кн. 1. Титриметрические и гравиметрический методы анализа. — М.: Дрофа, 2005. — С. 16 – 24.

Ссылка на основную публикацию
Adblock
detector