Webbc.ru

Веб и кризис
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Настоящая и будущая стоимость денег

Настоящая и будущая стоимость денег

В инвестиционной практике, как правило, необходимо сравнивать сумму денег, укладывается в проект с суммой денег, которые инвестор надеется получить после завершения инвестиционного периода Для сравнения ния суммы денежных средств при их вложения с суммой денег, которая будет получена используют понятие будущая и нынешняя стоимость денег

Будущая стоимость денег это та сумма, в которую должны превратиться через определенное время, вложенные сегодня под процент деньги

Расчет будущей стоимости денег связано с процессом наращивания (компаундирования) первоначальной суммы

Наращивание это увеличение первоначальной суммы денег путем присоединения к ней суммы процентных платежей

Для расчета будущей стоимости денег используется формула сложных процентов:

где FV (Future value) — будущая стоимость денег, Р (present value) — начальная инвестирована сумма; r-ставка%, или ставка доходности; n — количество периодов, по которым начисляются проценты, (1 r) n — множитель наращивания (компаундирования.

Сложный процент — это сумма дохода, которую получит инвестор в результате инвестирования определенной суммы денег при условии, что простой процент не уплачивается конце каждого периода, а добавляется к сумме основного вклада и в на другие периоде также приносит дохо.

Процентная ставка используется не только как инструмент наращивания стоимости денежных средств, но и как норма доходности инвестиционных операций

Множитель наращивания (компаундирования) будущая стоимость одной денежной единицы в настоящее время, инвестированной на определенный период под процентную ставку

Пример:

Банк платит 5% годовых по депозитному валютном вклада В соответствии с формулой будущей стоимости денег $ 100, что Вы положили на депозит сегодня через год равна:

FV1 = $ 100 (1 +0,05) = $ 105

Если Вы решили оставить эту сумму на депозите еще на один год, то в конце второго года размер вклада составит:

FV2 = $ 105 (1 +0,05) = $ 110,25

FV2 = P (1 r) 2 = $ 100 (1 +0,05) 2 = $ 110,25

Настоящая (современная) стоимость денег — это сумма будущих денежных поступлений, приведенных к текущему моменту с учетом процентной ставки, или нормы доходности

Нынешняя стоимость денег рассчитывается по формуле:

PV =,

где PV (present value) — текущая стоимость денег

Пример:

Предположим инвестор хочет получить $ 200 через 2 года Какую сумму он должен положить на депозит сегодня, если ставка процента составляет 5%?

PV2 = = $ 181,4

Расчет настоящей стоимости денег называется процессом дисконтирования будущей стоимости денег Из формулы следует, что дисконтирования — процесс обратный наращиванию Размер r называется ставке дисконта, или просто дисконтом, а величина (1 r) n — множителем дисконтирования

Дисконт это процентная ставка, которая применяется к денежным сумм, которые инвестор планирует получить в будущем для того, чтобы определить размер инвестиций в настоящее время При определении учетных ставок учитывается ують такие принципы:

  • из двух будущих поступлений высшее учетную ставку будет иметь то, что поступит позже;
  • чем ниже определенный уровень риска, тем ниже должна быть ставка дисконта;
  • если общие процентные ставки на рынке растут, растут и дисконтные ставки

Дисконт может уменьшиться, если есть перспектива делового подъема, снижение инфляции и процентных ставок Если уменьшается дисконт, то растет настоящая стоимость будущих доходов

Множитель дисконтирования текущая стоимость 1 денежной единицы за период n дисконтированная на процент r за каждый период

Расчет будущей и настоящей стоимости денег можно сделать с помощью обычного или финансового калькулятора, а также с помощью финансовых таблиц, приведенных в приложениях к данному во дручника В финансовых таблицах по горизонтали указаны ставки процентов, а по вертикали — номер периода, на пересечении этих значений можно найти величину соответствии множителя наращивание или дисконтированияя.

Очевидно, если Вы два разных проекта с одинаковым периодом реализации, но разными учетными ставками, то можно определить их текущую стоимость и сравнить, какой из них целесообразно выбрать

Для формирования эффективных стратегических и тактических программ предприятию необходимо постоянно проводить диагностику предложенных проектов и направлять ее прежде всего на перспективу (хотя результаты р ретроспективной диагностики состояния инвестиционной деятельности объекта тоже учитываются.

Качество диагностического анализа зависит от выбранных критериев оценки принятия инвестиционных решений, то есть насколько весомым является комплекс факторов, используется при исследованиях и насколько пр равильна учитывается их возможное влияние на принятие конкретного инвестиционного решения

Совокупность количественных критериев, используемых для оценки эффективности инвестиций можно разделить на две группы: динамические (учитывающие фактор времени) и статические (учетные) Классификация методов в оценки по этому критерию приведена на Рис29

Рис23 Классификация количественных методов оценки инвестиционных проектов

Динамические показатели также называют дисконтными, поскольку они базируются на определении текущей стоимости (дисконтировании) денежных потоков, создающих инвестированы средства

Настоящая стоимость денег, ее определение и использование в финансовых расчетах;

Настоящая стоимость денегэтосумма, получаемая в результате приведения будущей стоимости денег к настоящему моменту с помощью дисконтной ставки.

Если предположить простую финансовую сделку, в результате которой будущая стоимость средств (F) приводится к некоторой настоящей сумме (Р ’ ), то данная сделка характеризуется показателем, называемым темпом снижения (i(t)):

. (4.36)

Темп снижения принято называть коэффициентом дисконтирования или дисконтной ставкой.

Пример 4.17. Предприятие должно вернуть в банк сумму долга в размере 500 тыс. гр. Настоящая приведенная сумма кредита, взятого на один год, составила 400 тыс. гр. Определить коэффициент дисконтирования или дисконтную ставку.

Решение:Используем формулу (4.36)

или 20%.

Метод дисконтирования наиболее часто используется в операциях по учету векселей и оценки эффективности инвестиционных проектов.

Учет векселя — это решение банка купить вексель у векселедержателя.

В теории финансовых вычислений существуют два метода расчета настоящей стоимости: математический и банковский (коммерческий).

При математическом методе определения настоящей стоимости используется процентная дисконтная ставка, т.е. решается задача обратная определению наращенной суммы. Эта задача, формулируется таким образом: какую сумму денег следует дать в долг на срок (t) лет, чтобы при начислении на нее процентов по ставке (n) получить наращенную величину, равную (F).

Банковский метод определения настоящей стоимости основан на использовании учетной ставки (d), т.е. проценты за пользование ссудой начисляются на сумму, подлежащую уплате в конце срока ссуды.

Определение настоящей стоимости денег при математическом методе предполагает использование схем простой и сложной дисконтной ставки.

Настоящая стоимость денег при использовании простой дисконтной ставки определяется по формуле:

, (4.37)

где P ’ — настоящая приведенная стоимость денег;

i — простая процентная дисконтная ставка;

t — срок финансовой сделки (число полных лет); в случае, когда (t) меньше 1 года, тогда (f — число дней сделки, или число дней обращения векселя, или число дней до даты погашения векселя, или число месяцев движения векселя; k — продолжительность года в днях или в месяцах; k — 365(366) дней или 12 месяцев);

F — будущая стоимость денег (будущая или номинальная стоимость векселя).

. (4.38)

Читать еще:  Программа молодой фермер условия получения денег

Пример 4.18. Банк выдал вексель сроком на 1 год, по которому можно будет получить сумму, 250 тыс. гр. Какая была внесена в банк сумма денег в момент приобретения векселя, если его доходность должна составить 11% годовых?

Решение: Используем формулу (4.37)

тыс. гр.

Пример 4.19. Владелец векселя номинальной стоимостью 250 тыс. гр. и сроком обращения 1 год предъявил его банку — эмитенту для учета за 120 дней до даты погашения. Банк учел вексель по ставке 16% годовых. Определить сумму, полученную владельцем векселя и величину дисконта, полученную банком.

Решение: Используем формулы (4.37) и (4.38)

тыс. гр.

тыс. гр.

Настоящая стоимость денег при использовании сложной процентной дисконтной ставки определяется по формуле:

, (4.39)

где — дисконтный множитель;

i — сложная процентная дисконтная ставка.

В финансовых вычислениях базовая формула (4.39), определения настоящей стоимости, может быть трансформирована с учетом различных периодов формирования денежных потоков:

, (4.40)

где F1, F2, F3, … Ft — будущая стоимость денег, формирующаяся по периодам;

(1 + i) 1 , (1 + i) 2 , (1 + i) 3 , …, (1 + i) t — дисконтные множители по периодам;

t — число периодов, приведения будущей стоимости к настоящему моменту времени.

Предложенная формула является базовой для оценки эффективности инвестиционных проектов. Чтобы оценить эффективность инвестиционного проекта в формулу (4.40) необходимо внести небольшие дополнения, предполагающие уменьшение настоящей приведенной стоимости на величину стартовых инвестиций. Формула для расчета может быть:

, (4.41)

где NVP (net present value) — чистая приведенная стоимость;

IC — стартовые инвестиции.

Пример 4.20. Предприятие прогнозирует реализовать инвестиционный проект стоимость в 1 млн. гр. базовых инвестиций в течение одного года. Дисконтная процентная ставка установлена по проекту на уровне 12% годовых. Чистый возвратный денежный поток формируется в течение 5 лет. В первый год чистый возвратный поток составит 160 тыс. гр., во втором году — 390 тыс. гр., в третьем году 560 тыс. гр., в четвертом году — 490 тыс. гр., в пятом году — 350 тыс. гр. Оценить эффективность инвестиционного проекта, рассчитав его настоящую приведенную стоимость и сумму дисконта по данному проекту.

Решение: Используем формулу (4.41)

Так как полученная сумма положительная, то рассматриваемый инвестиционный проект можно признать как экономически эффективный. Однако для окончательного решения требуется подсчет и ряда других показателей, например, периода или срока окупаемости и т.п.

При начислении сложных дисконтных процентов (m) раз в году формулу (4.39) можно представить в таком виде:

, (4.42)

где — дисконтный множитель.

Для формул (4.39) и (4.42) значение дисконта может быть определено по следующим формулам:

. (4.43)

. (4.44)

Пример 4.21. Определить настоящую стоимость суммы, 120 тыс. гр., которую должны выплатить через 3 года, если на первоначальную сумму начислялись сложные проценты в размере 12% годовых. Дополнительные условия: а) начисление производилось 1 раз в год; б) начисление производилось ежеквартально.

Решение: Используем формулы (4.39) и (4.42)

а) тыс. гр.

б) тыс. гр.

При банковском методе определения настоящей приведенной стоимости денег при простой учетной дисконтной ставке расчет производится по формуле:

, (4.45)

где d — учетная дисконтная ставка, доли единиц.

Пример 4.22. Векселедержатель предъявил для учета вексель на сумму 3 млн. гр. со сроком погашения 1 февраля текущего года. Вексель предъявлен 12.01 текущего года. Банк согласился учесть вексель с дисконтом 14% годовых. Определить сумму, которую получит векселедержатель и сумму дисконта, полученную банком.

Решение: Используем формулу (4.45)

млн. гр. (получил векселедержатель).

или 23014 гр. (сумма дисконта).

Пример 4.23.Предприятие продало товар в кредит с оформлением простого векселя, номинальная стоимость которого 450 тыс. гр., срок векселя — 60 дней, ставка процента за кредит — 19% годовых. Через 45 дней с момента оформления векселя предприятие решило учесть вексель в банке; предложенная банком дисконтная ставка составила 15% годовых. Определить суммы, полученные предприятием и банком в результате данной сделки.

а) определим будущую стоимость векселя к моменту его погашения:

тыс. гр.

б) определим срочную стоимость векселя в момент учета его банком:

тыс. гр.

в) определим сумму, которую получит предприятие:

тыс. гр.

г) определим сумму денег, которую получит банк за 15 дней до погашения векселя:

464,055 – 460,541 = 3,514 тыс. гр.

д) определим сумму комиссионных, полученных банком при учете векселя:

460,541 – 455,473 = 5,068 тыс. гр.

е) общая сумма средств, полученная банком при учете векселя:

3,514 + 5,068 = 8,582 тыс. гр.

Настоящая стоимость денег при сложной дисконтной учетной ставке определяется по формуле:

. (4.46)

где d — сложная годовая дисконтная учетная ставка.

Дисконт вычисляется по формуле:

. (4.47)

Сложная дисконтная учетная ставка может быть определена по формуле:

. (4.48)

Что такое временная стоимость денег

Временная стоимость или, как ещё часто говорят, временная оценка денег (ударение в слове «временная» здесь ставится на последний слог) – это экономическая концепция учитывающая изменение стоимости денег с течением времени.

Если говорить простыми словами, то суть данной концепции можно выразить одним предложением: одна и та же сумма денег сегодня стоит дороже, чем завтра и в последующие дни (причем, чем больше промежуток времени, тем больше эта самая разница в стоимости).

Объясняется это также довольно просто, как с экономической, так и с чисто психологической точки зрения. С точки зрения человеческой психологии всегда приятнее получить деньги сегодня, нежели завтра, в следующем месяце или через год. А поэтому одна и та же сумма полученная, что называется, сей момент, всегда оценивается дороже.

Ну а с точки зрения экономики, временная стоимость денег объясняется (и, собственно, оценивается) теми процентами, которые деньги могут принести за конкретный рассматриваемый промежуток времени.

Взять, к примеру, простой вклад в банк. Если вы положили на свой банковский счёт 100000 рублей, а через год сняли с него уже 108000 рублей, то временная стоимость указанной суммы денег за этот период составила 8000 рублей (более корректно будет указать её в процентах – 8% годовых).

В общем и целом из рассматриваемой концепции вытекают два следующих важных принципа:

  1. В рамках проведения любых финансовых операций (с платежами, разнесёнными по срокам) следует обязательно учитывать фактор времени при взаиморасчётах;
  2. В плане анализа долгосрочных инвестиций (или финансовых операций) некорректно суммировать денежные величины, относящиеся к разным моментам времени (без учёта стоимости денег за рассматриваемые периоды).

Как рассчитать временную стоимость денег

Теперь давайте поговорим о том, как, собственно говоря, эту самую пресловутую стоимость рассчитать. Как уже понятно из вышесказанного, временная стоимость денег в численном выражении является не чем иным, как той прибылью, которую можно бы было извлечь из них (например, посредством инвестирования) за рассматриваемый период времени.

То есть в самом простом случае, например при инвестировании денег в облигации с годовой ставкой доходности в 8%, потерянная прибыль за год будет составлять эти самые 8%. Другими словами, сумма в 100000 рублей, через один год будет оцениваться уже в (100000 + 100000х0,08) = 108000 рублей. И наоборот, будущая сумма (через один год) в 100000 рублей, в настоящее время будет оценена в 100000/1,08 = 92592,59 рублей.

Читать еще:  Перевод денег между своими счетами проводки

При проведении финансовых операций, все разнесённые во времени платежи приводят к единому моменту времени (дисконтируют). Таким образом и учитывается временная стоимость денег.

Принято различать два основных вида стоимости:

  1. Нынешняя стоимость денег (Present value, PV);
  2. Будущая стоимость денег (Future value, FV).

Нынешнюю стоимость денег PV ещё называют дисконтированной стоимостью. Для приведённого выше примера (100000 рублей и восьмипроцентных облигаций), нынешняя стоимость денег равна 100000 рублей, а будущая, соответственно, 108000 рублей.

В общем случае, при проведении финансовых расчётов все денежные суммы приводятся либо к PV, либо к FV (за заданный промежуток времени) и только после этого их суммируют (или проводят другие вычисления с ними).

Расчёты величин PV и FV могут проводиться как на основе простого, так и на основе сложного процента.

Напомним, что сложным процентом называется начисление прибыли с учётом реинвестирования. То есть, например, прибыль за пять лет при годовой ставке доходности в 5%, будет считаться с учётом того, что каждый год к инвестируемой сумме добавляются 5% прибыли.

В случае расчёта на основе простого процента, формулы нынешней и будущей стоимости денег будут иметь вид:

где R – процентная ставка (годовых);

T – срок в годах.

При расчёте на основе сложного процента, формулы примут вид:

А, например, для случая аннуитетных платежей со ставкой роста g и ставкой дисконтирования i, нынешнюю стоимость денег (PV) можно рассчитать по формуле:

Что оказывает влияние на временную стоимость денег

Если, что называется, копнуть чуть глубже, то можно сказать, что временная стоимость денег может зависеть как от внутренних, так и от внешних факторов. К внутренним факторам следует отнести такие, которые зависят главным образом от того, каким образом происходит распоряжение деньгами с течением времени. А именно:

  1. Уровень доходности (проценты от инвестиций денежных средств);
  2. Уровень риска сопряжённый с вышеупомянутыми инвестициями. Риск может заключаться как в неполучении дохода от инвестиций, так и в прямом убытке от них (вплоть до полного невозврата инвестированных средств).

К внешним же факторам относят те, которые не зависят от того каким образом управляются деньги, в какие финансовые инструменты они инвестируются и пр. Самым главным из них является инфляция. Чем выше уровень инфляции, тем больше обесцениваются деньги со временем и, следовательно, тем меньше становится их будущая стоимость (FV).

Для учёта всех этих факторов существуют сложные формулы, позволяющие максимально точно (насколько это вообще возможно) рассчитать временную стоимость денег. Точность таких расчётов во многом ограничена тем, что такие величины как уровень доходности, риск или инфляция берутся исходя из прогнозируемых значений (а любой прогноз имеет свою степень погрешности).

Мы же не стали вникать в такие премудрости и привели простые формулы для расчёта текущей (PV) и будущей (FV) стоимости денег на основе предполагаемого уровня доходности по ним (см. предыдущий раздел). Полагаю, что этого вполне достаточно для того, чтобы понять всю суть излагаемой здесь теории.

Ну а если сказать ещё проще, то с точки зрения простого трейдера или инвестора, рассматриваемая концепция временной стоимости денег может быть сведена к аксиоме: Деньги должны делать деньги.

Понравилась статья? Сохраните ссылку на неё у себя в соцсетях:

Discovered

О финансах и не только…

Будущая стоимость денег

Будущая стоимость денег (future value; FV) — сумма инвестированных в настоящий момент денежных средств, в которую они превратятся через определенный период времени с учетом определенной ставки процента. Определение будущей стоимости денег связано с процессом наращения стоимости, осуществляемом по специальным алгоритмам.

Будущая стоимость денег рассчитывается на базе концепции стоимости денег во времени, основываясь на процентных ставках и настоящей стоимости. Будущая стоимость инвестиций зависит от того, каким методом начисляются проценты: простые проценты, сложные проценты или аннуитет.

Идея, лежащая в основе концепции будущей стоимости денег, состоит в том, что $1000 сегодня стоят больше, чем $1000 через год. Так происходит потому что деньги могут быть помещены на сберегательный счет или размещены в форме других инвестиций, а, следовательно, принесут доход в течение года. Это называют концепцией стоимости денег во времени, которая применяется во многих инвестиционных схемах.

При начислении простых процентов формула для расчета будущей стоимости (FV) инвестиций имеет следующий вид:

где PV — настоящая стоимость (сумма, которая инвестируется в настоящий момент);
i — процентная ставка за период начисления процентов (например, если проценты начисляются раз в год, то годовая; если проценты начисляются ежемесячно, то за месяц);
t — количество периодов времени, в течение которого начисляются проценты (например, если проценты начисляются ежемесячно, а деньги инвестируются на 1,5 года, то t составит 18, то есть 18 месяцев в течение которых будут начисляться проценты).

По многим видам инвестиций начисляются сложные проценты. В этом случае формула для расчета их будущей стоимости имеет следующий вид:

Например, если первоначальная сумма инвестиций составляет $1000, процентная ставка 8% годовых, начисление процентов осуществляется ежемесячно, а инвестиционный горизонт составляет 2 года, то будущая стоимость составит:

Это означает, что $1000 сегодня будет стоить $1172,89 через два года при условии ежемесячного начисления процентов по ставке 8% годовых.

Однако процентные ставки могут колебаться, причем существенно. Например, если они возрастут до 12% годовых, то новый инвестор, который осуществит аналогичную инвестицию, через два года получит сумму равную:

При этом инвестиции, осуществленные ранее под 8%, станут менее привлекательными, и их продажа станет возможной только с дисконтом. Напротив, если процентные ставки упадут ниже 8% годовых, новые инвестиции будут менее привлекательными. Поэтому продажа старых инвестиций будет осуществляться выше номинальной стоимости, то есть с премией.

Аннуитеты являются финансовыми продуктами, которые обеспечивают регулярные выплаты по фиксированной процентной ставке. Самыми простыми формами аннуитетов являются регулярное внесение средств на сберегательный счет, по которому проценты выплачиваются ежемесячно, или ипотека с ежемесячными платежами, включающими принципал и проценты. Для расчета будущей стоимости аннуитета используется следующая формула:

где A – размер платежа при аннуитете.

Примером аннуитетов может служить пожизненный аннуитет. По сути, он является средствами, которые накапливаются за счет регулярного внесения платежей клиентом в течение определенного периода времени, а затем начинают выплачиваться в виде стабильного потока доходов, обычно после выхода клиента на пенсию. При оценке стоимости пожизненного аннуитета тщательно оценивается его будущая стоимость, а также учитываются такие факторы, как пенсионный возраст и процентные ставки.

Настоящая и будущая стоимость денег

При подходе к деньгам простой арифметический и, вроде как бы логический подход, не всегда работает. Казалось бы, если один равен одному, то и один рубль равен одному рублю всегда и везде. Это правильно, но только тогда, когда речь идет не о времени.

Читать еще:  Срок возврата денег по договору займа

Концепция

Стоимость денег во времени связана с тем, что до тех пор, пока существуют альтернативные и разнообразные возможности получения дохода, стоимость денег всегда будет зависеть от того момента времени, когда предполагается их получение. Поскольку существует возможность получения процентов на имеющиеся денежные средства, постольку, чем скорее поступает доход от финансового инструмента или бизнеса, тем лучше. Здесь под «скорее», также имеется в виду и чаще, то есть чем скорее и/или с большей периодичностью поступает доход, тем лучше. Поэтому при принятии любых инвестиционных решений постоянно следует учитывать концепцию изменения стоимости денег с течением времени, или будущую стоимость денег. По сути, эта концепция предполагает приведение к «общему знаменателю» денежных средств, разнесенных во времени.

Инфляция

Любая экономика мира подвержена инфляционным процессам, заключающимся в постоянном повышении цен на товары и услуги. Размеры инфляции могут быть катастрофичными, как, например, в Венесуэле или Сомали, да и в России в начале 90-х годов, но также и умеренными, и достаточно комфортными для народного хозяйства. То есть цены постоянно и неуклонно растут, поэтому на один рубль сегодня можно купить, пусть на чуть-чуть, но больше, чем на тот же рубль завтра.

Таким образом, к концепции изменения стоимости денег во времени можно подходить с двух разных сторон. С одной стороны, сегодняшние деньги могут быть инвестированы под проценты и дать доход. То есть происходит наращивание упущенной выгоды. С другой стороны, лежащие без движения денежные средства, постоянно теряют свою ценность, выраженную в количестве товаров и услуг, которые на эти деньги можно приобрести. В обоих вариантах ключевым вопросом становится определение будущей стоимости денег, имеющихся сейчас в наличии. Это актуально, как для бизнеса, так и для физического лица.

Простые и сложные проценты

Вложение денег в различные финансовые инструменты осуществляется под проценты, процентами же измеряется также и доходность любого бизнеса. Существует два общепринятых способа начисления процентов на инвестированную сумму. Простые проценты, как следует из их названия, вычисляются очень просто. Обычно речь идет о годовых процентах. Сумму дохода за год можно определить, взяв объявленный процент доходности за год от инвестированной суммы. Простые проценты начисляются по сберегательным сертификатам, купонным доходам облигаций, по отдельным видам банковских вкладов и в ряде других случаев. Отличие сложных процентов от простых заключается в частоте начисления процентов и постоянном изменении суммы, на которую эти проценты начисляются. Если для определения дохода по простым процентам достаточно знать значение годового процента и период вложения, то для сложных процентов к этому добавляется периодичность выплат, а также факт капитализации, то есть присовокупление полученных процентов к основной сумме вложений. Расчет сложных процентов ведется по формуле, предусматривающей возведение в степень процентной ставки количеством начислений за весь период инвестирования. Именно по сложным процентам ведутся основные расчеты по оценке эффективности того, или иного вложения денег.

Развитие концепции сложных процентов

Будущая стоимость денег – это ничто иное, как сумма, до которой возрастут текущие инвестиции за период с их вложения с начислением сложных процентов до конца срока вложения. Иногда это называется «наращенной стоимостью». Формула будущей стоимости денег полностью идентична формуле для расчета сложных процентов:

FV (future value) – будущая стоимость денег;

PV (present value) – настоящая стоимость денег;

Е – процентная ставка за один период начисления;

N — количество периодов начислений.

Поскольку здесь речь идет не о вкладе в конкретный банк, где ставка процента жестко определена этим банком, а об определении будущей стоимости имеющихся денежных средств, крайне важным является вопрос об определении ставки процента. Существует много подходов к решению этого вопроса. К основным из них можно отнести:

— средняя ставка банковского процента по определенному региону, сложившаяся на рынке к моменту вложения денег;

— учетная ставка Центрального банка страны;

— зафиксированный уровень инфляции, либо по товарам народного потребления, либо по ценам промышленности, в зависимости от объекта;

— прогнозные ставки инфляции, утверждаемые Минэкономразвития;

— ставки ЛИБОР, увеличенные на страновой риск, когда расчеты делаются для иностранных партнеров.

При проведении экономического расчета будущей стоимости денег, зачастую, выбор ставки занимает гораздо больше времени, чем обсуждение прогнозного денежного потока.

Дисконтирование

Процесс определения будущей стоимости денег связан с обратной задачей – определение настоящей стоимости денег, то есть процессом дисконтирования. Совершенно очевидно, что в данном случае указанная формула просто преобразуется по математическим правилам, а именно:

Задача дисконтирования возникает, когда нужно оценить будущее поступление денежных средств в текущем моменте, что практически всегда бывает необходимо при подготовке бизнес-планов и других экономических расчетов.

Аннуитет

Несмотря на наукообразное название, понятие аннуитета – это всего лишь обозначение потока равных сумм денежных средств, возникающих через равные промежутки времени. Данное явление встречается очень часто. Можно привести общеизвестные примеры. Получение заработной платы, периодические платежи за услуги ЖКХ, оплата мобильного телефона по безлимитному тарифу, периодические взносы на сберегательный счет и так далее. Денежные потоки могут быть притоками дохода, полученными от инвестирования, или оттоками средств, инвестируемых с целью получения будущих доходов. В технико-экономических обоснованиях практически любого проекта аннуитет встречается всегда.

Будущая стоимость аннуитета

Расчет будущей или настоящей стоимости денег в аннуитете мало отличается от уже описанного расчета сложных процентов. Просто для каждого промежуточного периода, кроме процентов, добавляется еще и периодический взнос, и уже на эту сумму начисляется процент для следующего периода. Существует формула для расчета, выглядит она несколько сложно:

FV = PV *( (1+ E)ⁿ-1) / E

На практике эта формула неудобна, обычно пользуются либо таблицами с факторами наращения для аннуитета в одну денежную единицу, либо, что происходит чаще, встроенными формулами в приложении EXCEL.

Пример такой таблицы приведен ниже:

Данные в приведенной таблице представляют собой множители для определения будущей стоимости денег в аннуитете. Соответственно, когда необходимо определить настоящую стоимость денег, то есть провести дисконтирование аннуитета, эти множители становятся знаменателями соответствующих сумм денежного потока.

Приведенная стоимость смешанного потока доходов

Смешанный поток доходов, в реальности встречается гораздо чаще, чем классический аннуитет. Стоимость денег в этом потоке определяется, что называется «вручную». Для этого должны быть найдены, а затем суммированы приведенные стоимости всех доходов. Главная практическая польза от всех указанных расчетов заключается в получении возможности сравнивать различные варианты инвестирования. При этом необходимым условием любого вложения денег является превышение всех дисконтированных доходов, над всеми дисконтированными расходами для извлечения этих доходов.

Ссылка на основную публикацию
Adblock
detector